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The response of piled bridge foundations to liquefaction-induced lateral soil deformation is an im-

portant design consideration in seismically active regions. Recent research and case history data

suggest that three-dimensional deformation of the approach embankment can significantly influence

the loads placed on the embedded foundations during a flow failure or lateral spreading event. For

example, the 2010 Maule earthquake in Chile caused widespread lateral spreading in the soil sur-

rounding the Mataquito river bridge, however, only insignificant structural damage was observed in

the bridge itself. The discrepancy between the amount of soil deformation and structural damage

suggests that design procedures for this load case that do not make adequate consideration for 3D

soil deformation mechanisms may lead to overly conservative and expensive design solutions.

Finite element models of the Mataquito river bridge are created using the OpenSees computa-

tional framework to investigate the reduction in foundation loads during lateral spreading implied by

the minimal structural damage at the site. These models include beam on nonlinear Winkler foun-

dation models, dynamic effective stress models of the bridge-foundation-soil system in plane strain,

and 3D models of the southern bridge abutment, approach embankment, and surrounding soil. This

numerical work focuses on the development of efficient element formulations and appropriate mesh

configurations to minimize computational effort, and seeks to frame the load reduction mechanisms

in the context of a simplified analysis procedure for the lateral spreading load case.

The results of the numerical models for the Mataquito bridge, along with a parameter study

conducted using a second set of 3D finite element models, indicate that consideration for the 3D

geometry of the bridge site results in tangible reductions in foundation bending demands and abut-

ment displacements compared to those returned by a plane strain description of the problem. This

reduction increases as the depth of the liquefiable layer and the effective width of the approach

embankment are decreased. An approach is proposed to estimate the reductions in abutment dis-

placement and associated foundation bending demands for a given site geometry, and an existing

simplified analysis procedure is modified to better consider the findings of this work.
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1

Chapter 1

BACKGROUND AND INTRODUCTION

Seismic design of bridge foundations is a significant aspect to the general design process

for bridges in certain parts of the world. For river-spanning bridges, a critical part of the

seismic design effort is an assessment of the effects of liquefaction-induced flow failure or

lateral spreading on the bridge foundations. Current design procedures for this load case

generally prescribe simplified analytical methods based on a two-dimensional description of

the site geometry. The assumption of plane strain for this type of analysis is a practical

approach that will typically lead to conservative foundation designs. Due to the uncertainty

involved in the lateral spreading problem, such conservatism is generally desired, however,

for the case of an approach embankment built with finite lateral extents, it is hypothesized

that the use of design procedures based on plane strain assumptions may result in overly

conservative and expensive design solutions.

Numerous bridges affected by lateral spreading during past earthquakes have displayed

three-dimensional soil deformation effects that cannot be captured in a two-dimensional

analysis. In many of these cases, it is apparent that the bridge and its foundations have

altered the near-field deformation pattern of the laterally spreading soil, and it is likely

that the resistance provided by the bridge leads to reductions in foundation demands as

compared to those predicted under the assumption of plane strain. The pile pinning analysis

procedure (Martin et al., 2002; Ashford et al., 2011), is a simplified approach that has been

developed to account for the lateral resistance provided by bridge foundations during lateral

spreading, however, this approach does not offer a way to directly evaluate when significant

resistance can be expected and when it cannot. The development of such a predictive

method represents a highly advantageous supplement to this existing analysis approach.

The objective of this research is to identify and quantify the mechanisms implied by

the case history record that may result in potential reductions in the bridge foundation

demands developed during lateral spreading through consideration for the three-dimensional

geometry of the bridge site. This work involves a review of relevant case histories and recent

work, with a focus on numerical modeling strategies, and the development of numerical

models that capture the kinematic loading conditions and 3D effects of the problem. The

results obtained from the numerical modeling effort are used to evaluate and inform the

existing pile pinning analysis approach, and a proposed procedure to assess the expected

amount of lateral pinning resistance for a given combination of bridge foundation, soil profile,

and approach embankment is presented.
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1.1 Representative Case Histories

During liquefaction-induced lateral spreading, a bridge approach embankment, and any na-

tive crustal soil above the liquefied zone, will tend to deform towards the river, imposing

lateral loads on the bridge foundations in their path. In some cases, due to the combination

of the lateral stiffness of the foundation and the limited transverse extents of the embank-

ment there is a tendency for the embankment soil to slump down and flow around the bridge

foundation instead of flowing directly into it. This type of 3D embankment deformation has

been documented during reconnaissance efforts following multiple earthquakes for which

liquefaction-induced lateral spreading was observed along river banks. Several typical cases

are discussed in the following sections to provide context and motivation for this research.

1.1.1 Bandai Bridge, 1964 Niigata Earthquake

The Bandai Bridge, finished in 1929, is located in the central part of Niigata City, Japan,

spanning the Shinano River. Liquefaction-induced lateral spreading during the M7.5 June

16, 1964 Niigata earthquake caused dramatic bank convergence in the area of the bridge.

The Bandai Bridge is an arched reinforced concrete bridge with abutments founded on piles

and piers founded on pneumatic caissons (Katayama et al., 1966). The bridge was damaged

during the lateral spreading of the river bank, however, the damage was not catastrophic.

The abutments settled and rotated with attendant cracking, and the piers settled unevenly.

Regardless of the damage sustained, evidence of three-dimensional embankment deformation

and foundation pinning effects was observed at this site.

Aerial photographs taken before and after the earthquake were used to measure per-

manent ground displacements (Hamada and O’Rourke, 1992). These photographs visu-

ally demonstrate the restraining effect of the piled bridge abutments on the lateral flow

of soil. The ground displacement vectors determined from the photogrammetric analyses,

Figure 1.1, support the visual evidence, indicating that river bank displacements near the

bridge foundations are lesser than those further away, and that displacements behind the

abutments have components parallel to the river bank. The presence of longitudinal crack-

ing near the southern abutment also suggests that the embankment soils spread parallel to

the river bank in this area. Further evidence of three-dimensional effects in the embankment

deformation is given by Katayama et al. (1966), who report the settlement and swelling-out

of the road surface in the vicinity of each abutment.

1.1.2 Landing Road Bridge, 1987 Edgecumbe Earthquake

The Landing Road Bridge, constructed in 1962, spans the Whakatane River in the Bay of

Plenty Region of New Zealand. The abutments of the Landing Road Bridge are supported

by groups of eight raked piles, and the northern-most spans extend over a wide floodplain
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Figure 1.1: Permanent ground displacement vectors in vicinity of Bandai Bridge (Hamada
and O’Rourke, 1992).
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Figure 1.2: Northern approach to Landing Road Bridge two days after the Edgecumbe
event. Ejected sand is visible on the ground surface (Berrill and Yasuda, 2002).

on the bank of the river as shown in Figure 1.2. Extensive liquefaction-induced lateral

spreading of the northern river bank occurred near the bridge during the M6.3 March 2,

1987 Edgecumbe earthquake (Pender and Robertson, 1987). Minor rotation of the northern

abutment was observed (∼ 0.5◦), with cracking in the piles taking place near the connection

to the pile cap on the river side (Berrill et al., 2001).

Observed cracks due to lateral spreading in the northern floodplain were parallel to the

river bank except in the immediate vicinity of the bridge where they met the bridge axis

at approximately 45◦ (Berrill et al., 2001). Settlement took place in the northern approach

embankment, with cracks in the roadway observed extending back a distance of approxi-

mately 200 m. The general deformation pattern observed at the bridge demonstrates the

resistance to ground displacements provided by the bridge foundations and a corresponding

three-dimensional aspect to the embankment deformation.

1.1.3 Rio Estrella Highway Bridge, 1991 Costa Rica Earthquake

Liquefaction-induced lateral spreading occurred near several river-spanning bridges due to

the M7.5 April 22, 1991 earthquake in Limon Province, Costa Rica (Franke, 2011). Among

these, the highway bridge over the Rio Estrella demonstrates the behavior of interest in this

work. After the strong shaking, there was evidence of widespread liquefaction and lateral

spreading with displacements as large as 1 to 3 m near the southern bridge abutment, which

consists of a concrete wall supported on two groups of twenty piles (Priestley et al., 1991;

Franke, 2011).
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Figure 1.3: Settlement and longitudinal cracking of southern approach embankment at Rio
Estrella Highway Bridge (Youd, 1993).

Very little permanent displacement or rotation of the south abutment was observed.

Despite this lack of permanent abutment displacement, the southern bridge span became

unseated and collapsed into the river. The approach embankment for the southern abutment

failed due to the lateral spreading, settling approximately 2 m and spreading perpendicularly

to the longitudinal direction of the bridge with large cracks occurring parallel to the bridge

axis as shown in Figure 1.3.

1.1.4 Mataquito River Bridge, 2010 Maule Earthquake

The Mataquito River Bridge, constructed in 2006, spans the Mataquito River between

Quivolgo and Iloca, Chile. Liquefaction-induced lateral spreading occurred on both banks

of the river due to the Mw8.8 February 27, 2010 offshore Maule earthquake. The bridge

has seat-type abutments founded on 4 × 2 drilled shaft groups, and the interior piers are

supported by 3×1 groups of shafts. Lateral soil displacements of up to 2.5 m occurred near

the northeast abutment, involving the approach embankment and a 100 m floodplain sloping

gently toward the river. Similar lateral spreading effects were observed on the opposite bank,

however, the corresponding embankment soils were not involved (FHWA, 2011).

The bridge foundations reportedly did not experience significant permanent lateral de-

formations, and all bridge spans remained intact and functional. The northeast approach

embankment settled approximately 0.7 to 1 m relative to the bridge deck, Figure 1.4. Lon-

gitudinal roadway cracks suggest that there was a component of embankment deformation

perpendicular to the bridge axis of approximately 0.6 m (GEER, 2010a), indicating that

some of the soil moved around the abutment rather than directly into it. This 3D effect may

have reduced the forces applied to the foundations, contributing to the minimal damage and

deformation observed in the bridge.
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Figure 1.4: Settlement and lateral spreading deformation of northeast approach embank-
ment to Mataquito River Bridge (FHWA, 2011).

1.1.5 Various Bridges, 2010 Darfield and 2011 Christchurch Earthquakes

The M7.1 September 4, 2010 Darfield and M6.3 February 22, 2011 Christchurch earth-

quakes in New Zealand caused liquefaction to occur over much of the city of Christchurch.

Liquefaction-induced lateral spreading affected several bridges spanning the Avon and Heath-

cote rivers, with most of the associated damage concentrated on the abutments, approaches,

and piers rather than the superstructure (Wotherspoon et al., 2011). Three-dimensional de-

formation of approach embankments during lateral spreading was observed at multiple sites

for bridges spanning the Avon River.

The South Brighton Bridge, constructed in 1980, has an approximately 70 m span with

seat-type abutments and a single central pier (GEER, 2010b). The abutments and pier

are supported on raked prestressed concrete piles. Liquefaction-induced lateral spreading

occurred on both banks of the river due to the Darfield earthquake, causing significant

cracking in the approach embankments. These cracks were perpendicular to the river bank

near the abutments, becoming parallel to the river in the surrounding ground. Similar

damage occurred during the Christchurch earthquake, increasing the permanent deforma-

tion (Wotherspoon et al., 2011). Figure 1.5(a) shows the observed longitudinal surface

cracks in the western approach to the bridge, and Figure 1.5(b) shows and aerial view of

the bridge site with visible lateral spreading surface cracks along the river banks.

The ANZAC Drive Bridge, built in 2000, is a newer three span bridge supported by

two 2-column bents and concrete abutments with wing-walls, all founded on piles (GEER,

2011). Minor liquefaction and lateral spreading occurred due to the Darfield event with no

attendant damage (Wotherspoon et al., 2011). Severe liquefaction and significant lateral
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(a) (b)

Figure 1.5: South Brighton Bridge after the Christchurch event. (a) Longitudinal lateral
spreading cracks in western approach embankment (Cowan, 2011). (b) Aerial photo with
visible lateral spreading cracks on river banks (LINZ, 2011).

(a) (b)

Figure 1.6: ANZAC Drive Bridge after the Christchurch event. (a) Aerial photo (LINZ,
2011). (b) Lateral spreading cracks in southern approach (GEER, 2011).

spreading occurred on both river banks near the bridge due to the Christchurch earthquake,

with more pronounced evidence on the southern bank, as shown in Figure 1.6(a). Lateral

spreading cracks parallel to the bridge axis were observed on both sides of the southern

approach embankment (GEER, 2011), as shown in Figure 1.6(b). Both abutments experi-

enced permanent rotations due to the lateral spreading and the restraint provided by the

superstructure.

The Avondale Road Bridge, built in 1962, is a three span bridge supported by two

3-column bents and seat-type abutments with wing-walls, all founded on piles (GEER,

2011). Limited liquefaction was observed due to the Darfield earthquake, with no associated

damage to the bridge, however, liquefaction-induced lateral spreading occurred due to the



www.manaraa.com

8

Figure 1.7: Avondale Road Bridge after the Christchurch event. Lateral spreading cracks
are visible near the southern approach and along the river bank (LINZ, 2011).

Christchurch earthquake. During the latter event, lateral spreading occurred on both river

banks, causing permanent rotations in the abutments. At the southern abutment, lateral

spreading cracks were observed extending from the sides of the abutment, perpendicular to

the river bank near the abutment and rotating to a parallel configuration over about 15 m

distance (Wotherspoon et al., 2011). Figure 1.7 shows an aerial view of the visible lateral

spreading surface cracks at the Avondale Road Bridge site.

1.2 Scope of Work

The research discussed in this document is supported by a review of previous work relevant

to the problem and an evaluation of case histories with potential for use in the investigation.

Aside from these preliminary efforts, the majority of the research is numerical in nature. All

of the numerical work is performed using the OpenSees finite element analysis platform, an

open-source computational framework maintained by the Pacific Earthquake Engineering

Research (PEER) Center, and several numerical tools are implemented or modified within

OpenSees to support this effort. This development includes the efficient continuum elements

discussed in Chapter 4 and modifications to the contact constraint enforcement approach

for the (Petek, 2006) beam-contact element discussed in Chapter 9.

Three primary numerical analysis approaches are considered as a part of this work, each

representing the chosen case study bridge with varying levels of complexity. These models

and their general purposes are summarized as follows:

• Dynamic effective stress plane strain finite element models are developed for a full

bridge site. These models are used to analyze the site response for a ground motion

similar to that which occurred at the bridge, and to assess the liquefaction and lateral

spreading susceptibility and response of the site.
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• Simplified beam on nonlinear Winkler foundation models and associated limit equilib-

rium slope stability models are developed to analyze a bridge abutment and foundation

using the pile pinning analysis approach adopted by Caltrans (2011). These models

are used to assess the viability of this analysis approach in relation to the observed

behavior at the site and through comparison with the other modeling approaches.

• 3D finite element models of a bridge abutment and foundation, approach embankment,

and the underlying soils are created to simulate the effects of lateral spreading on the

embedded foundations. These models consider the inherent three-dimensionally of the

site that cannot be directly considered in the other modeling approaches, and are used

to identify mechanisms leading to reductions in lateral foundation loads from those

estimated using simplified descriptions of the problem.

The general and specific development related to these models, along with a discussion of

their respective results, are discussed in Chapters 7 through 9. In addition to the numerical

models developed for the case study site, a second set of 3D FE models is created and

analyzed in order to quantify the effects of various geometric site parameters on the reduction

in foundation demands as compared to a two-dimensional description of the problem. The

development and assessment of these parameter study models are discussed in Chapter 10.

1.3 Summary

The loads imposed on embedded structures during liquefaction-induced lateral ground de-

formation an important consideration in the lateral design of deep foundations for bridges

in seismically active regions. A brief review of several case histories documenting bridge

performance in past earthquakes demonstrates that the presence of foundation elements

influences the deformation of the soil during lateral spreading. In each of the referenced

case histories, there is an observed tendency for the approach fill to slump vertically and

for the soil to deform perpendicularly to the bridge axis, likely due to the lateral resistance

provided by the bridge foundations and superstructure.

An analysis which assumes 2D conditions, i.e., all embankment and native crustal soil

behind a bridge abutment will transmit load directly into the foundation during lateral

spreading or flow failure, may be overconservative. A simplified analysis procedure for

estimating lateral spreading forces which makes consideration for the effects observed in the

case histories, or provides guidance on when 2D or 3D assumptions are most applicable,

would be a valuable tool for bridge design. The research discussed in this document attempts

to provide guidance on such a procedure.
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Chapter 2

REVIEW OF PILED BRIDGE FOUNDATION ANALYSIS

A significant amount of research has been dedicated to investigating the response of

bridge foundations and general deep foundations in liquefied and laterally spreading soil.

These investigations have employed different combinations of numerical modeling, experi-

mental testing, and case history evaluation to reach various conclusions. A review of the

recent relevant literature follows. For general reference, the following works provide a fairly

comprehensive discussion of the issues related to the seismic analysis of bridge foundations

and piles (Ledezma and Bray, 2010, 2008; Martin, 2004; Aviram et al., 2008b; Ashford et al.,

2011; Finn, 2005; Cubrinovski and Ishihara, 2007; Berrill and Yasuda, 2002)

2.1 Experimental Analysis

The behavior of piled bridge abutments, as well as isolated piles or pile groups, during lateral

spreading and other lateral load cases has been studied via numerous experiments. These

experiments include centrifuge tests (e.g., Armstrong et al., 2008; Gonzalez Lagos et al.,

2007; Tobita et al., 2006; Bhattacharya et al., 2005; Brandenberg et al., 2005; Boulanger

et al., 2003; Kondoh and Tamura, 2003; Abdoun and Dobry, 2002), full-size or scaled shake

table tests (e.g., Suzuki et al., 2006; Dungca et al., 2006; Cubrinovski et al., 2006; Tokimatsu

et al., 2005), and full-scale field tests (e.g., Lemitzer et al., 2010, 2009; Bozorgzadeh et al.,

2008; Stewart et al., 2007; Rollins et al., 2005; Wallace et al., 2001; Mokwa and Duncan,

2000; Romstad et al., 1995).

These experiments have provided insights into such phenomena as pile pinning effects

during lateral spreading (Armstrong et al., 2008; Gonzalez Lagos et al., 2007), pile buck-

ling in liquefied soil (Bhattacharya et al., 2005), the lateral behavior of pile caps, bridge

abutments, and backfill soil (Lemitzer et al., 2009; Bozorgzadeh et al., 2008; Mokwa and

Duncan, 2000; Romstad et al., 1995), induced earth pressures on bridge abutments dur-

ing lateral spreading (Kondoh and Tamura, 2003), the interaction of piles and laterally

spreading crustal layers (Knappett et al., 2010; Brandenberg et al., 2007a), and the general

response of piles and pile groups to liquefaction and lateral spreading.

2.2 Numerical Analysis

Numerical analysis techniques have become the most viable method of analysis for design

purposes, and extensive numerical analyses have been conducted in order to validate and re-
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fine existing approaches. As confidence has increased, it has become common for researchers

to use numerical analysis to gain further insight on the behavior of deep foundations in liq-

uefied and laterally spreading soil. The majority of the numerical analyses present in the

literature can be separated into three broad groups; (1) those that exclusively use a beam on

nonlinear Winkler foundation (BNWF) approach to represent soil-foundation interaction,

(2) those that model the soil-foundation system in 2D with a plane strain soil continuum,

and (3) those that model the full three-dimensionality of the problem. There are obviously

hybrid approaches which fit in between these broad categories, however, they serve as useful

separators for a survey of the literature.

2.2.1 Beam on Nonlinear Winkler Foundation Models

The use of a BNWF model to represent the interaction between deep foundations and

the surrounding soil is prevalent. In this approach, the deep foundation is modeled as

a beam-column and the soil is modeled using a series of discrete nonlinear force density-

displacement springs. These springs are used to represent both lateral (normal to the pile)

and vertical (parallel to the pile) soil response, and are typically derived from experimental

testing. In the generally accepted nomenclature for this approach, p-y springs (e.g., Reese

and Van Impe, 2001; API, 2007) refer to lateral soil-pile interaction, t-z springs (e.g., Seed

and Reese, 1957; Kraft et al., 1981; Reese et al., 2006) to frictional side resistance, and Q-z

springs (e.g., Meyerhof, 1976; Vijayvergiya, 1977) to pile end bearing.

BNWF analyses of piles and pile groups have been compared and validated against ex-

perimental data or case histories in numerous studies using both pseudo-static pushover

approaches (e.g., Boulanger et al., 2003; Tokimatsu et al., 2005; Brandenberg et al., 2007b;

Takahashi et al., 2006a; Ashford and Juirnarongrit, 2006; Khalili-Tehrani et al., 2007) and

dynamic analysis (e.g., Miwa et al., 2006; Boulanger et al., 2003). In general, good agree-

ment has been observed between the analytical and experimental results for different config-

urations and loading types, though thoughtful definition of the included nonlinear springs

is often required. These types of correlations have increased the viability of the BNWF

analysis approach, leading to its ubiquity in current practice.

BNWF methods have been used to model soil-structure interaction in both 2D and

3D, and have been applied to single piles, pile groups, and complete bridge foundations.

The BNWF approach has been incorporated into models investigating thermal loads on

bridges (e.g., Faraji et al., 2001), models examining the effects of live load distribution

on integral abutment bridges (Dicleli and Erhan, 2005), and in pseudo-static pushover

analyses of piles and piled bridge abutments (Silva and Manzari, 2008; Dicleli, 2005). Force-

displacement curves representing the lateral response of pile caps and abutments with native

and backfill soil have also been investigated (e.g., Dicleli, 2005; Dicleli and Erhan, 2005;

Shamsabadi et al., 2007, 2005; Mokwa and Duncan, 2000).
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Other work which has employed a BNWF approach includes an examination of the stiff-

ness of piles subject to dynamic shaking in liquefiable soils (Arduino et al., 2006), an analysis

of a base-isolated curved bridge using dynamic nonlinear 3D finite element analysis (Ates

and Constantinou, 2011), an evaluation of the effects of various bridge abutment modeling

decisions on the global seismic response of bridges (Aviram et al., 2008a), and investigations

into pile stability and bending-buckling interaction in liquefiable soils (Dash et al., 2010;

Knappett and Madabhushi, 2006).

Proposed simplified analysis and design procedures have been developed based on BNWF

representations of soil-foundation interaction. Ashour and Ardalan (2011) proposed an

analytical method for piles subject to lateral spreading which considers strain wedge effects

and accounts for the differing responses of the crust, liquefied soil, and non-liquefied soil.

Bradley et al. (2011) proposed a probabilistic framework for pseudo-static analysis of piles

in liquefied and laterally spreading soils. Valsamis et al. (2011) proposed a simplified design

procedure for single piles in liquefaction-induced lateral spreading based on a parametric

analysis. Design charts for the maximum bending moment and displacement of the pile

are presented. Brandenberg et al. (2011) developed demand fragility curves for bridges

in liquefied and laterally spreading ground using nonlinear equivalent static analysis with

inputs sampled using Monte Carlo simulation. Franke (2011) analyzed case history results

within the context of performance-based evaluation of bridge foundations.

Cubrinovski and Ishihara (2004) proposed a simplified analysis procedure for piles sub-

ject to lateral spreading based on a closed-form solution to the beam on elastic foundation

equation. Linear properties were assumed for the soil and pile for this solution, however,

simplified models for nonlinear behavior can be incorporated using an equivalent linear ap-

proach. Cubrinovski and Ishihara (2006) extended this method to consider pile groups.

Meera et al. (2007) and Chang et al. (2008) presented similar finite difference solutions to

the beam on Winkler foundation problem for use in the analysis of piles subject to lateral

spreading.

2.2.2 Two-Dimensional Finite Element and Finite Difference Models

Plane strain analysis of bridge-foundation-soil systems is an approach which offers refine-

ments over the BNWF approach (e.g., effective stress analysis) at a lower computational cost

than fully three-dimensional analysis. Plane strain finite element analysis (FEA) has been

used to model pile groups subject to lateral spreading (Chang et al., 2006), to investigate the

relationship between ground motion intensity measures and pile response (Bradley et al.,

2009), to model bridge abutments subject to lateral loads and seismic shaking (Shamsabadi

et al., 2010; Ooi et al., 2010; Hara et al., 2004), and to model the seismic response of bridge-

foundation-soil systems using an effective stress approach (Shin et al., 2008; Bradley et al.,

2010).
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Despite the applications listed above, plane strain analysis is the least common ana-

lytical approach in the literature, likely due to the associated difficulty in modeling deep

foundations appropriately. The assumption of plane strain is perfectly applicable to the

soil domain in most conditions, and bridge foundations without piles can be modeled ef-

fectively (e.g., Shamsabadi et al., 2010). However, plane strain is not applicable to deep

foundation bodies, which have inherently small out-of-plane dimensions and interact with

the soil in a fundamentally three-dimensional manner.

Several approaches have been used to overcome the non-applicability of deep foundations

to plane strain conditions. The most effective and common approach is to use p-y curves,

which are based on 3D soil-pile interaction, to connect piles modeled as beam-column ele-

ments to the adjacent solid elements representing the soil domain (e.g., Shin et al., 2008;

Chang et al., 2006). Hara et al. (2004) modeled a pile group using several columns of solid

elements, assuming the row of piles to act as a plane strain wall. Ooi et al. (2010), Bradley

et al. (2009), and Bradley et al. (2010) used a similar assumption with a pile row acting as

a wall in plane strain, but modeled the piles as beam-column elements.

Neither of these approaches are perfect. For example, the assumptions involved with

the plane strain wall approach are not applicable to all pile spacings and cannot account for

a single pile. When using the p-y curve approach, it is important to address the effects of

representing the soil using both solid elements and soil-pile interaction springs. It is often

assumed that the solid elements represent the far-field soil response while the p-y curves

represent the near-field response. Modifications to the stiffness of the soil-pile interaction

curves such that the combined lateral response of the spring and solid elements approximates

a target p-y response is another alternative (Armstrong, 2010).

2.2.3 Three-Dimensional Finite Element and Finite Difference Models

Three-dimensional analysis possesses the greatest potential for accurately capturing the

full behavior of soil-foundation systems, though it also presents the greatest computational

expense. As computing power has increased, the relative cost of 3D numerical analysis has

become less prohibitive, and the use of this technique has become more common in both

research and practice.

Much of the early work in 3D numerical analysis of deep foundations was conducted by

Desai and his colleagues (e.g., Desai and Appel, 1976; Faruque and Desai, 1982; Muqtadir

and Desai, 1986). Other examples of relatively early work in this field include Brown et al.

(1989) and Brown and Shie (1990, 1991). These early studies showed that 3D analysis is

a viable approach for single and grouped deep foundations, able to incorporate nonlinear

constitutive behavior, geometric nonlinearity, interface friction, sloping ground, and other

influential factors.

The research program discussed in this document primarily involves the use of 3D FEA
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as a numerical modeling tool. In order to gain a better understanding of the 3D modeling

process, as related to the particular problem under consideration, the literature summary for

this topic is presented in greater detail. Each aspect of the full 3D model is separately dis-

cussed to provide a more comprehensive survey of the different approaches which have been

previously undertaken. These aspects include soil constitutive behavior, the use of mixed

elements for fluid-solid coupling, treatments for deep foundations and the soil-foundation

interface, and boundary and loading conditions.

2.2.3.1 Soil Constitutive Modeling

Soil constitutive modeling approaches in 3D analyses of soil-foundation systems have ranged

from relatively simple Von Mises, Drucker-Prager, and Mohr-Coulomb plasticity mod-

els (e.g., Yang and Jeremic, 2002, 2003, 2005; Khalili-Tehrani et al., 2007; Ooi et al., 2010)

to more sophisticated alternatives as computing power has increased. An extension of

the Duncan and Chang (1970) hyperbolic constitutive model with a yield cap and con-

sideration for soil dilatancy effects was used by Shamsabadi et al. (2010). Multi-surface

plasticity models (Prevost, 1977, 1985a; Elgamal et al., 2003) have been used to represent

the constitutive behavior of both cohesive and cohesionless soils in total and effective stress

analyses, respectively (e.g., Elgamal et al., 2006, 2008).

Other approaches are found in the work of Cubrinovski et al. (2008) and Uzuoka et al.

(2008), who used a critical state constitutive model for cohesionless soil (Cubrinovski and

Ishihara, 1998a,b) in effective stress analyses, Cheng and Jeremic (2009), who used a soil

constitutive model based on the work of Manzari and Dafalias (1997) and Dafalias and

Manzari (2004), and Takahashi et al. (2006b, 2010) who used a plasticity model with a

subloading surface and rotational hardening after Hashiguchi and Chen (1998).

2.2.3.2 Coupled Fluid-Solid Elements

Effective stress analysis requires a method to account for the interaction between the pore

fluid and soil skeleton in saturated or partially saturated soil. Various approaches derived

from the work of Biot (1941, 1956, 1962) have been developed to accomplish this goal in a

numerical setting, each adding fluid degrees-of-freedom to the system according to different

assumptions. Three primary approaches are discussed by Zienkiewicz and Shiomi (1984).

These approaches are the u-p-U element formulation, which uses the full system of equations

developed for the saturated problem, the u-U formulation, a simplification of the u-p-U

approach which assumes incompressibility for each medium, and the u-p approach, which

simplifies the system by assuming that fluid acceleration can be neglected. The theory

behind these approaches is discussed in further detail in Section 3.2.

Each of these primary finite element formulations is represented in the literature related

to 3D effective stress analyses of soil-foundation systems. Cubrinovski et al. (2008) and
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Uzuoka et al. (2008) used the u-U and u-p element formulations, respectively, in their

3D simulations of shake table tests. Cheng and Jeremic (2009) used the u-p-U element

formulation in their numerical simulations of a single pile in liquefiable soil.

2.2.3.3 Deep Foundation Elements and Treatment of Soil-Foundation Interface

Deep foundations have typically been incorporated into 3D FEA using either solid ele-

ments (e.g., Yang and Jeremic, 2002, 2003, 2005) or beam-column elements (e.g., Petek,

2006; Cheng and Jeremic, 2009; Elgamal et al., 2008). For solid element approaches, lin-

ear elastic foundation constitutive behavior is the predominant choice, though elastoplastic

behavior has been considered in some cases. An example of the latter is presented by Khalili-

Tehrani et al. (2007), who used a combination of truss and solid elements to represent the

elastoplastic response of reinforced concrete piles.

When using solid elements for deep foundations, it is prevalent in the literature to

simulate the interface between the foundation and surrounding soil by equating some or all

of the displacement degrees-of-freedom at the soil-foundation interface (e.g., Cubrinovski

et al., 2008; Uzuoka et al., 2008), or by simulating a frictional interface via a thin layer of

solid elements (e.g., Yang and Jeremic, 2002, 2003, 2005) or interface elements with frictional

constitutive behavior (e.g., Ooi et al., 2010; Khalili-Tehrani et al., 2007).

The use of beam-column elements to model piles is beneficial, as it simplifies post-

processing interpretation of pile shear and moment values, however, it also necessitates

special treatment of the soil-pile interface due to the incompatibility of the pile and soil

element types. Another advantage of this approach lies in the relative ease with which to

consider elastoplastic pile constitutive behavior via fiber section models (e.g., Cheng and

Jeremic, 2009; Jeremic et al., 2009; Elgamal et al., 2008).

Interface approaches for models with beam-column pile elements have typically involved

rigid no-slip node-to-node contact links (e.g., Elgamal et al., 2008; Jeremic et al., 2009),

though other treatments have been used. Cheng and Jeremic (2009) used a combination

of rigid links and impermeable solid elements to ensure compatibility for both the solid

and fluid degrees-of-freedom at the soil-foundation interface. Petek (2006) introduced a

3D beam-solid contact element which creates a frictional stick-slip interface between the

beam-column and solid elements, allowing for more realistic soil-foundation interaction.

This beam-solid contact element was used to examine numerical p-y curves in the 3D FEA

of McGann et al. (2010, 2011).

2.2.3.4 Boundary and Loading Conditions

Proper boundary conditions must be devised to ensure the success of a 3D analysis of a soil-

foundation system. Boundary conditions for foundation elements typically replace structural

components which are not critical to the model, and vary depending upon the particular
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support conditions assumed at the connection between the critical and non-critical compo-

nents. Rigid-type connections are commonly represented using rotational fixity, while more

flexible connections may be more appropriately modeled with rotational freedom. Trans-

lational degrees-of-freedom for foundation elements may also require restriction depending

upon the geometry of the model.

Boundary conditions for the soil continuum require somewhat greater care to ensure

appropriate results. At a minimum, the boundaries must be fixed such that all rigid body

displacement modes are restricted. In static or pseudo-static analyses, the main concern is

related to diminishing the effects of the boundary on the portions of the model which are of

primary interest. Boundary effects can be controlled for an analysis of a soil-foundation sys-

tem by extending the limits of the soil continuum away from the location of the foundation

elements. The optimal extents are those which minimize the boundary effects while maxi-

mizing computational efficiency. A brief study demonstrating boundary effects in analysis

of laterally loaded piles is given by McGann (2009).

Minimization of boundary effects is also critical in dynamic analysis, however, devising

proper boundary conditions is more difficult than in static or pseudo-static cases. The

particular method used for this purpose depends upon the objective of the numerical model.

For example, Cubrinovski et al. (2008) and Uzuoka et al. (2008) compared numerical results

to shake table tests, therefore, the geometry and boundaries in the model mirrored those

in the experiment. All lateral boundaries were fixed against out-of-plane translation to be

consistent with the rigid container used in the shake table tests, and input excitations were

applied at the fixed base of the model. Specification of boundary and loading conditions in

this manner is common for simulations of experimental analysis.

When creating a numerical model for a site in the field, the assumption of rigid bound-

aries is typically no longer valid. Several strategies have been developed to include the effect

of semi-infinite subsurface extents in a numerical model of finite size. The use of periodic

boundary conditions, in which the lateral extents of the model share translational degrees-

of-freedom, is one such approach which attempts to appropriately account for the free-field

response of the soil domain. Elgamal et al. (2008) used this approach in their model of a

complete bridge-foundation-soil system.

Lysmer and Kuhlemeyer (1969) introduced a technique to capture a transmitting bound-

ary through the use of viscous dashpots. By defining the viscous response of the dashpots

based on the density and shear wave velocity of the material beyond the boundary, this

approach appropriately captures the dissipation of wave energy in the numerical model.

When defining transmitting boundaries using the Lysmer and Kuhlemeyer (1969) method,

accelerations are not directly applied to the model. Instead, a force is applied using the

technique developed by Joyner and Chen (1975). This applied force is proportional to the

input velocity and the constitutive properties of the material beyond the boundary. This
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approach is commonly used in numerical analysis for geotechnical problems to account for

the compliance between the soil domain of the model and the semi-infinite media outside

of the considered domain. For example, Elgamal et al. (2008) represented an underlying

elastic half-space in this manner via dashpots in the three Cartesian directions at each node

on the base of their 3D FE model of a full bridge-foundation-soil system.

Another technique which can be used in geotechnical simulations to properly account for

the differences in wave behavior inside the finite soil domain represented by the model and

the wave behavior in the semi-infinite soil medium is the domain reduction method (Bielak

et al., 2003; Yoshimura et al., 2003). The domain reduction method (DRM) consists of

two phases. The initial phase involves a background geological model which includes both

the source of the earthquake and the region of interest. This background model is used

to compute the free-field displacement wave-field demands on the boundary of the smaller

region of interest. The second phase involves only the reduced region of interest. In this

phase, effective seismic forces are applied at the boundary of the local region. These effective

forces are derived from the boundary displacement demand obtained in the initial phase.

Jeremic et al. (2009) applied a vertically propagating wave field to their model using the

DRM, utilizing equivalent linear site response analysis for the initial analysis phase.

Representation of the initial state of stress is of paramount importance in geotechnical

simulations. The soil response (i.e., stress, strain) greatly depends on these initial conditions.

Several approaches can be used to create an appropriate initial state. The typical method

is to apply gravitational body forces to the elements in the numerical model prior to any

further analysis steps. Jeremic et al. (2009) and Cheng and Jeremic (2009) took this a

step further, using a staged modeling procedure in which gravitational stresses were first

developed in a base soil mesh. After this stage, the soil elements were removed and replaced

by foundation elements and gravitational stresses were developed for the new configuration.

2.2.4 Other Numerical and Analytical Approaches

Investigations into the response of bridge foundations to lateral loads have not always taken

a form which fits conveniently into one of the three categories discussed previously. The pri-

mary exception to the former categorization is analyses based on slope stability approaches.

Such analytical methods have been used to examine pile pinning effects (Boulanger et al.,

2006), to assess the nonlinear force-displacement behavior of bridge abutments (Shamsabadi

et al., 2007, 2005), to examine displacements of bridge abutments (Basha and Babu, 2009),

and to estimate lateral spreading forces on bridge piles (Zha, 2006). Other examples of

alternative analytical approaches include the work of Sextos and Taskari (2008), who pro-

posed a multi-platform analysis approach for the analysis of bridge-foundation-soil systems

in seismic conditions, and the work of Kotsoglou and Pantazopoulou (2009), who analyzed

a bridge-foundation-soil system as an equivalent single degree-of-freedom system.
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2.3 Summary

A brief overview of the extensive amount of research related to the effects of liquefaction-

induced lateral ground deformation on bridge foundations has been presented. This work

has been conducted via experimental and numerical analysis, and significant progress has

been made in improving the general understanding of this complex problem. Numerical

analyses for this problem have most often used BNWF assumptions, though continuum

analyses in two- and three-dimensions have also been explored. Simplified approaches are

prevalent because they are efficient and effective, however, it is recognized that certain

simplifying assumptions can lead to overconservative solutions.
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Chapter 3

BRIEF REVIEW OF FINITE ELEMENT TECHNOLOGY

Finite element simulations of geotechnical problems often involve complex constitutive

models, may consider spatial domains requiring a large number of degrees-of-freedom, and,

for undrained conditions, must make appropriate consideration for the coupled response

of the pore fluid and solid soil particles which drives the overall soil behavior. Finite ele-

ment formulations which reduce computational demand via coarse mesh accuracy, effective

assimilation of nonlinear constitutive models, or general efficiency are ideal in this context.

Extensive research has been devoted to establishing finite element formulations for solid

mechanics that are equally applicable to any arbitrarily-posed problem. This work has

focused on the development of elements that are computationally efficient, are free from

volumetric locking for incompressible problems, possess good bending behavior, have little

or no sensitivity to mesh distortion, are accurate in a coarse mesh, and can incorporate

nonlinear constitutive equations in a simple manner (Wriggers, 2008). Several families of

techniques have emerged in pursuit of satisfying these interrelated objectives, and those

most applicable to this research are briefly summarized in the following sections.

3.1 Reduced Integration

The computational demand related to the relatively large soil domain necessary in most

geotechnical continuum models can be lessened through reduced integration techniques.

Early applications include the work of Doherty et al. (1969), Zienkiewicz et al. (1971),

and Naylor (1974), who showed that in addition to reducing computational demand over

full numerical integration, reduced integration can improve element behavior for certain

problems. The initial response to reduced integration was poor, as many viewed it as

more of a trick than a method, however, Malkus and Hughes (1978) proved the equivalence

of reduced integration techniques with mixed methods firmly grounded in mathematical

theory, thus legitimizing the approach.

One of the non-efficiency related benefits of reduced integration is in the mitigation of

locking in low-order elements. Selectively applying reduced integration to the volumetric

portion of the element while applying full integration to the deviatoric portion effectively

eliminates volumetric locking in four-node quadrilateral and eight-node hexahedral elements.

The removal of locking comes with a price, as use of this technique leads to a spatial in-

stability in the pressure field known as checkerboarding (Belytschko et al., 2000). Fully
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reduced integration offers the least computational effort possible for these elements, how-

ever, in addition to the pressure instability of selectively-reduced integration, fully reduced

integration results in instabilities in the displacement field known as spurious modes or

hourglassing (Belytschko et al., 2000; Wriggers, 2008).

Hourglass stabilization techniques (Flanagan and Belytschko, 1981; Belytschko et al.,

1984; Jacquotte and Oden, 1984; Wissmann et al., 1987) are an effective means of control-

ling the instabilities related to reduced integration. Hourglass stabilized reduced integration

has been shown to be effective in numerous applications. This technique has been specialized

for incompressible elasticity and beam bending (Belytschko and Bachrach, 1986), extended

to include assumed strain fields (Belytschko and Bindeman, 1991, 1993), and incorporated

into finite deformation elements (Reese, 2003, 2005). Hourglass stabilized single-point inte-

gration is a natural approach to reduce computational demand for the 2D and 3D elements

developed in this work.

3.2 Analysis of Saturated Porous Media

Elements developed for modeling saturated soil (e.g., Prevost, 1982, 1985b; Zienkiewicz,

1981; Zienkiewicz and Shiomi, 1984), are typically derived from mixed formulations that

consider the coupled response of the fluid and solid phases comprising the soil, often within

the framework of the early work of Biot (1941, 1956, 1962). In the established approach,

the saturated porous medium is described in terms of the displacement of the solid skeleton,

u, the pressure in the pore fluid, p, and the displacement of the fluid phase relative to the

solid phase, w.

The system of equations resulting for this description of the problem contains an in-

convenient coupling in the mass matrix, however, a modification of variables introduced

by Zienkiewicz and Shiomi (1984)

U = u+
w

n
(3.1)

where n is the porosity, ensures an uncoupled mass matrix that is more convenient in

temporal integration. The new system of equations for u, p, and U can be discretized using

mixed finite element procedures, and is sometimes referred to as the u-p-U formulation.

Deibels and Ehlers (1996) present such an element formulated to account for material and

geometric nonlinearities.

The system of equations can be further simplified by assuming idealized conditions for

the fluid-solid mixture, with different assumptions leading to the elimination of different

variables. Assuming incompressibility for both the pore fluid and the soil skeleton (Prevost,

1982) removes the pore pressure from the system of equations, resulting in a u-U (or u-w)

element formulation. Assuming that the fluid acceleration relative to the solid skeleton is

negligible (Zienkiewicz, 1981) results in a formulation which can be written entirely in terms

of u and p. Of the available options, the u-p formulation (Zienkiewicz and Shiomi, 1984)
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is particularly attractive in the context of an efficient solution and is the method chosen in

this work. The solid displacement and fluid pressure are typically of interest in geotechnical

analysis, and the assumptions leading to the formulations are valid for most soil dynamics

problems.

3.3 Numerical Stability for Incompressible Problems

Low mixture permeabilities and nearly incompressible pore fluids are commonly encoun-

tered in geotechnical problems. For the u-p formulation, the system of equations in this

incompressible-impermeable limit corresponds to similar to mixed formulations in incom-

pressible elasticity, Darcy flow, and Stokes flow where proof of convergence coincides with

satisfaction of the inf-sup condition (Brezzi and Fortin, 1991; Wriggers, 2008). Fulfillment of

the inf-sup condition is related to ensuring full rank for the coupling terms in the linearized

system of equations. Element formulations which do not satisfy the inf-sup condition are

not automatically useless (Wriggers, 2008), however, the stability of such elements cannot

be guaranteed in the limiting case.

Stability can be ensured by using interpolation functions for displacement that are of

higher order than those used for the pressure (Zienkiewicz et al., 2005), or otherwise sat-

isfying ]the inf-sup condition, but there are several available techniques which can be used

to enhance the stability of low-order elements. These include special time stepping algo-

rithms (Huang et al., 2001), direct stabilization techniques (Huang et al., 2004; Zienkiewicz

et al., 1994), approaches based on the Galerkin Least-Squares method (Hughes et al., 1986;

Truty, 2001), and variational multiscale methods (Hughes, 1995; Hughes et al., 1998; Xia

and Masud, 2009), among others. A direct stabilization technique is adopted for the cou-

pled fluid-solid elements developed for this work. Further discussion on the implemented

pressure field stabilization formulation is available in Section 4.6.

3.4 Summary

A short review of finite element technology applicable to geotechnical analysis in two- and

three-dimensions has been presented. These techniques are applied to the development of

efficient continuum element formulations for the analysis of solid and fluid-solid coupled

problems. The resulting elements, discussed in Chapter 4, are used during the numerical

investigations presented in the remainder of this work.



www.manaraa.com

24



www.manaraa.com

25

Chapter 4

STABILIZED SINGLE-POINT INTEGRATION CONTINUUM

ELEMENTS

The present chapter discusses new low-order four-node quadrilateral and eight-node hex-

ahedral elements with a u-p formulation which combine hourglass-stabilized single-point

integration in the solid phase with non-residual based stabilization of the pressure field for

enhanced stability in the incompressible-impermeable limit. The presented formulations re-

sult in stable, accurate, and computationally efficient elements suitable for dynamic analysis

of saturated soils in 2D and 3D. In addition, the solid phase formulations for these elements

stand alone as efficient displacement-based elements suitable for general static and dynamic

analysis of continua.

4.1 General Mixed Element Formulation

The u-p element formulation (Zienkiewicz and Shiomi, 1984) is derived from two coupled

equations, the equation of motion for the mixture neglecting the acceleration of the fluid,

∇ ·
(

σ′ − p1
)

+ ρg − ρü = 0 (4.1)

and the combined equation of motion for the fluid phase and mass balance for the mixture,

tr ε̇+
n

Kf

ṗ+∇ ·
[

k
(

−∇p+ ρfg
)]

= 0 (4.2)

where u is the displacement of the solid phase, σ′ is the effective stress, 1 is the second-

order identity tensor, ρ is the mixture mass density, g is a vector of body forces, tr ε̇ is the

volumetric strain rate in the solid phase, n is the porosity, Kf and ρf are the pore fluid

bulk modulus and mass density, respectively, and k is the permeability tensor. In this and

all subsequent discussion, compression is taken as negative.

Using the approximations u ≈ Nud and p ≈ Npp, where Nu and Np are arrays of

interpolation functions for displacement and pressure, respectively, and d and p are vectors

of nodal displacements and pore pressures, the following discretized functions are obtained

from (4.1) and (4.2) via the standard Galerkin technique:

Md̈+

∫

Ω

BTσ′ dΩ −Qp = f extu (4.3)

QT ḋ+ Sṗ+Hp = f extp (4.4)
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where

M =

∫

Ω

NT
u ρNu dΩ (4.5)

Q =

∫

Ω

BT1Np dΩ (4.6)

S =

∫

Ω

NT
p

n

Kf

Np dΩ (4.7)

H =

∫

Ω

∇NT
p k∇Np dΩ (4.8)

f extu =

∫

Ω

NT
u ρg dΩ+

∫

Γ

NT
u t dΓ (4.9)

f extp =

∫

Γ

NT
p kq dΓ−

∫

Ω

∇NT
p ρfkg dΩ (4.10)

where B is the standard kinematic matrix for the solid phase, and 1 = [1, 1, 0]T in 2D

or 1 = [1, 1, 1, 0, 0, 0]T in 3D. Voight notation is adopted in equations (4.3)-(4.10) and all

subsequent development. In the following sections, expressions for the matrices in (4.3)

and (4.4) are developed for single-point integration 2D and 3D elements.

4.2 Evaluation of Solid Phase for Four-Node Quadrilateral Element

The solid phase constituents of the discretized field equations (4.3) and (4.4) are evaluated

using a single integration point located in the center of the element (local coordinates, ξ =

η = 0) using linear interpolation functions. The single-point strategy involves an assumed

strain field for locking-free behavior and physical hourglass stabilization to eliminate the

spurious zero-energy modes associated with reduced integration.

4.2.1 Element Kinematics

The displacement field for the element is expressed in the form given by Belytschko and

Bachrach (1986)

u = (a0x + a1xx+ a2xy + a3xh)i+ (a0y + a1yx+ a2yy + a3yh)j (4.11)

where aix and aiy are scalar coefficients, x and y are global coordinates, and h = ξη is the

local coordinate product. Using this form, the nodal displacements, dx = [u1, u2, u3, u4]
T

and dy = [v1, v2, v3, v4]
T , can be expressed as

dx = a0xr+ a1xx+ a2xy + a3xh (4.12)

dy = a0yr+ a1yx+ a2yy + a3yh (4.13)
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where

r = [1, 1, 1, 1]T (4.14)

x = [x1, x2, x3, x4]
T (4.15)

y = [y1, y2, y3, y4]
T (4.16)

h = h(ξ,η) = [1,−1, 1,−1]T (4.17)

with local coordinate vectors

ξ = [−1, 1, 1,−1]T (4.18)

η = [−1,−1, 1, 1]T (4.19)

The kinematic equations for the element are defined in two parts. The first part is

obtained by computing the components of the small strain field from (4.11). This defines

a link between the strain, ε, and a vector a which contains the aix and aiy coefficients

of (4.11), (4.12), and (4.13). This link is expressed as

ε = B̃a =







1 0 0 h,x 0

0 1 0 0 h,y
0 0 1 h,y h,x





































a1x
a2y
axy
a3x
a3y































(4.20)

where

axy =
1

2
(a2x + a1y) (4.21)

and

h,α =
∂h

∂α
= ηξ,α + ξη,α (4.22)

for α = x, y.

The element kinematic equations are completed by determining a mapping between the

coefficient vector a and the nodal displacements d as

a = Ld =

















bx 0

0 by

by bx

γ 0

0 γ

















{

dx

dy

}

(4.23)

in which the b-vectors are the derivatives of the linear shape function vector

N(ξ, η) =
1

4
(r+ ξξ + ηη + hξη)T (4.24)
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evaluated at ξ = η = 0, i.e.,

bx =
∂N

∂x

∣

∣

∣

ξ=η=0
(4.25)

by =
∂N

∂y

∣

∣

∣

ξ=η=0
(4.26)

and

γ =
1

4

(

hT − (hT · x)bx − (hT · y)by

)

(4.27)

is the projection operator of Flanagan and Belytschko (1981).

The full kinematic link between the small strain field and the nodal displacements can

be expressed by combining (4.20) and (4.23), resulting in

ε = B̃Ld (4.28)

This form for the element kinematics provides the means to decompose the strain field into

two portions, a constant portion, and non-constant (stabilizing) portion associated with the

hourglass modes for the element. This decomposition is expressed as

ε = (B0 + FLb)d (4.29)

In this expression, the constant portion, B0, is the product of the 3 × 3 identity matrix

in the first three columns of B̃ with the first three rows of L, and is equivalent to the

standard kinematic matrix B evaluated at the center of the element. The 3× 8 sub-matrix

B0 = [B0 1, . . . ,B0 I , . . . ,B0 4] has the form

B0 I =







bx I 0

0 by I

by I bx I






(4.30)

where, e.g., bx I is component I of the 1× 4 vector bx.

The non-constant portion of (4.29) involves the sub-matrices formed by the remaining

columns of B̃, here referred to as F, and the remaining rows of L, which are designated as

Lb. The 3× 2 sub-matrix F is given by

F =







h,x 0

0 h,y
h,y h,x






(4.31)

and the 2× 8 sub-matrix Lb = [Lb 1, . . . ,Lb I , . . . ,Lb 4] has the form

Lb I =

[

γI 0

0 γI

]

(4.32)

in which γI is component I of the 1× 4 vector γ.



www.manaraa.com

29

4.2.2 Assumed Strain Field for Stabilization

A single-point quadrilateral element formulated from the kinematic relation given in (4.29)

reproduces the behavior of a standard displacement element with full 2× 2 numerical inte-

gration with less computational effort. The downside to this is that the locking phenomena

associated with the full-integration element are also reproduced. As a remedy, the non-

constant portion of the strain field is modified based on an assumed strain field such that

parasitic shear and volumetric locking are eliminated.

Volumetric locking near the incompressible limit is eliminated by assuming a strain

field in which the dilation in the non-constant (hourglass) modes is zero (Belytschko and

Bindeman, 1991). Parasitic shear is eliminated by ensuring that the shear strain in the

non-constant modes is zero. An assumed strain field which fulfills these goals is constructed

based on a general form of the kinematic hourglass matrix F, defined as

F̂ =







e1h,x e2h,y
e2h,x e1h,y
e3h,y e3h,x






(4.33)

where e1, e2, and e3 are arbitrary scalar constants. Substituting this general form for F

in (4.29) yields a strain field which can be expressed as

ε =











εx
εy
γxy











=











ε̄x + e1h,x γ · dx + e2h,y γ · dy

ε̄y + e2h,x γ · dx + e1h,y γ · dy

γ̄xy + e3h,y γ · dx + e3h,x γ · dy











(4.34)

where ε̄x, ε̄y, and γ̄xy are the constant part of the strain field, i.e., ε̄ = B0d, and the

remaining terms are the non-constant portion.

The shear strain in the non-constant modes is simply the non-constant portion of γxy.

From (4.34), it is clear that parasitic shear will be eliminated from the element for e3 = 0.

The dilation, ∆, in the hourglass modes is computed as the sum of the non-constant portion

of the normal strain components

∆ = (e1 + e2)
(

h,x γ · dx + h,y γ · dy

)

(4.35)

from which it is apparent that ∆ = 0 for a general displacement, d, when e1 = −e2. It

is shown in Belytschko and Bindeman (1991) that the strain energy in the non-constant

modes is finite for this choice of coefficients, which, in combination with the zero dilation

property, ensures an element free from volumetric locking.

Since e1 and e2 are arbitrary coefficients, their magnitude must be specified. Different

selections for these coefficients are available, each with certain advantages and disadvan-

tages. The particular magnitudes chosen in this work are e1 = 0.5 and e2 = −0.5. It was

shown in Belytschko and Bindeman (1991) that this selection yields good overall behavior
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for a stabilized element. With this choice for e1 and e2, and taking e3 = 0, the kinematic

hourglass matrix F̂ takes the form

F̂ =
1

2







h,x −h,y
−h,x h,y
0 0






(4.36)

4.2.3 Element Stiffness

The element stiffness matrix for the solid phase is computed using the decomposed form of

the kinematic relation given by

ε =
(

B0 + F̂Lb

)

d (4.37)

which is identical to that originally shown in (4.29) but with the substitution of the assumed

strain hourglass matrix F̂. Using this kinematic basis, the element stiffness, KE , can be

similarly decomposed into the sum

KE = K0 +Kstab (4.38)

where K0 and Kstab are the constant and stabilization portions, respectively.

The constant portion of the element stiffness is evaluated using single-point integration

as

K0 =

∫

Ω
E

BT
0 CB0dΩE = 4tJ0B

T
0 CB0 (4.39)

where t is the out-of-plane element thickness, C is the current material tangent operator,

and J0 is the Jacobian determinant evaluated at ξ = η = 0, which, after Belytschko et al.

(2000), can be computed as

J0 =
1

8
(x24y31 + x31y42) (4.40)

with xij = xi − xj and yij = yi − yj where, e.g., xi is component i of the nodal position

vector x.

The stabilization stiffness matrix for the element,

Kstab = LT
b

(

∫

Ω
E

F̂T
ĈF̂dΩE

)

Lb (4.41)

where Ĉ is the initial material tangent operator, is evaluated through analytical integration.

The terms inside the integral can be expressed as

F̂T
ĈF̂ =

[

C1h,
2
x C2h,x h,y

C2h,x h,y C1h,
2
y

]

(4.42)
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in which

C1 = Ĉ11 − 2Ĉ12 + Ĉ22 (4.43)

C2 = 2Ĉ12 − Ĉ11 − Ĉ22 (4.44)

where Ĉij are the components of the initial material tangent operator.

Constitutive behavior is assumed constant over the domain of the element. Only the

h-terms in (4.42) need to be integrated. Integrating h,2x over the element domain gives

∫

Ω
E

h,2x dΩE = t

∫

A

h,2x dA (4.45)

where t and A are the out-of-plane thickness and planar area of the element, respectively.

Expanding the area integral via (4.22) results in

∫

A

h,2x dA = η,2x

∫

A

ξ2dA+ ξ,x η,x

∫

A

ξηdA+ ξ,2x

∫

A

η2dA (4.46)

The remaining integral terms are the moments and product of inertia for the element in

local coordinates, e.g.,

Iξξ =

∫

A

ξ2dA (4.47)

allowing for the definition of the following term

Hxx :=

∫

A

h,2x dA = η,2x Iξξ + ξ,x η,x Iξη + ξ,2x Iηη (4.48)

The remaining h-terms from (4.42) follow similarly, resulting in the definitions

Hyy :=

∫

A

h,2y dA = η,2y Iξξ + ξ,y η,y Iξη + ξ,2y Iηη (4.49)

and

Hxy :=

∫

A

h,x h,y dA

= η,x η,y Iξξ +
(

η,x ξ,y +η,y ξ,x
)

Iξη + ξ,x ξ,y Iηη (4.50)

The moment and product of inertia terms are evaluated by computing the moment of

inertia matrix

I =
4

3
J0
(

ĝ1ĝ
T
1 + ĝ2ĝ

T
2

)

=

[

Iξξ Iξη
Iξη Iηη

]

(4.51)

in which ĝi are the normalized general base vectors for the element,

ĝi =
gi

||gi||
(4.52)



www.manaraa.com

32

where

g1 =

[

∂x

∂ξ
,
∂y

∂ξ

]T

; g2 =

[

∂x

∂η
,
∂y

∂η

]T

(4.53)

The analytically integrated form of Kstab can now be expressed as

Kstab = tLT
b

[

C1Hxx C2Hxy

C2Hxy C1Hyy

]

Lb (4.54)

in which the H-terms are evaluated according to (4.48)-(4.50) using moment and prod-

uct of inertia terms computed from (4.51). The stabilization stiffness is computed upon

initialization of the element, and is held constant for the duration of the analysis.

4.2.4 Internal and External Forces

The internal force vector for the solid phase, f intu , is evaluated in a manner similar to

that used for the solid phase stiffness, with a decomposition into a sum of constant and

stabilization portions

f intu = f int0 + f intstab (4.55)

The constant portion of the internal force vector, f int0 , is evaluated using single-point inte-

gration as

f int0 =

∫

Ω
E

BT
0 σ

′(ε)dΩE = 4tJ0B
T
0 σ

′(ε) (4.56)

where, as before, t is the out-of-plane element thickness, J0 is the Jacobian determinant at

the central integration point, and σ′ is the stress returned by the constitutive model as a

function of the strain, ε, in the element.

The stabilization portion is computed directly from the stabilization stiffness matrix,

f intstab = Kstabd (4.57)

where d is the current nodal displacement vector for the element.

The external nodal forces for the solid phase resulting from an applied body force, g,

are evaluated analytically from (4.9) as

f extI = gt

(

J0 +
1

3
J1ξI +

1

3
J2ηI

)

(4.58)

by taking advantage of the linear nature of the Jacobian determinant,

J = J0 + J1ξ + J2η (4.59)

where J0 is as given in (4.40) and

J1 =
1

8
(x21y34 + x34y12) (4.60)

J2 =
1

8
(x14y32 + x32y41) (4.61)
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with xij = xi − xj and yij = yi − yj where, e.g., xi is component i of the nodal position

vector x. Surface force contributions to the internal force vector from a traction, t, are

identical to a standard displacement element.

4.2.5 Mass Matrix for the Mixture

The mass matrix for the mixture, (4.5), is approximated as a lumped mass matrix. The

nodal masses in this matrix are determined using the strategy used for nodal forces, thus,

MII = ρt

(

J0 +
1

3
J1ξI +

1

3
J2ηI

)

(4.62)

where MII is component I, I of the diagonal mass matrix and ρ is the mixture mass density.

4.3 Evaluation of Fluid Phase for Four-Node Quadrilateral Element

The constituents of the discretized field equations, (4.3) and (4.4), corresponding to the pore

fluid are evaluated using a single integration point located at the center of the element. The

interpolation functions used for the pore pressure degrees-of-freedom are of the same order as

those used for the displacements, therefore, a stabilization technique is used to circumvent

violation of the inf-sup condition and create stability in the incompressible-impermeable

limit (see Section 4.6).

4.3.1 Compressibility Matrix

The compressibility matrix, S, is evaluated from (4.7) using single-point integration, result-

ing in

S = 4J0t
n

Kf

NT
p (0, 0)Np(0, 0) (4.63)

where Np(0, 0) is a 1× 4 vector of linear shape functions, (4.24), evaluated at ξ = η = 0.

In an implementation of this element, the computation of the compressibility matrix can

be further simplified by recognizing that S is a fully-populated 4 × 4 matrix in which the

components are identical, i.e.,

Sij = J0t
n

4Kf

(4.64)

4.3.2 Permeability Matrix

The 4× 4 permeability matrix, H, is evaluated from (4.8) using single-point integration as

H = 4J0t∇NT
p (0, 0)k∇Np(0, 0) (4.65)

where∇Np(0, 0) is the 2×4 gradient of the shape function vector Np evaluated at ξ = η = 0

and k is the 2× 2 permeability matrix. For isotropic permeability conditions, k reduces to

a single scalar value.
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4.3.3 Coupling Matrix

The 8 × 4 coupling matrix, Q, is evaluated from (4.6) using the decomposed form of the

kinematic relation given by (4.37), resulting in the expression

Q =

∫

Ω
E

BT
0 1Np(0, 0)dΩE +

∫

Ω
E

LT
b F̂

T1Np(0, 0)dΩE (4.66)

where 1 = [1, 1, 0]T . Because, F̂T1 = 0, the second term vanishes, simplifying (4.66) to

only the first integral term. This term is evaluated using single-point integration as

Q = 4J0tB
T
0 1Np(0, 0) (4.67)

4.3.4 Internal and External Forces

The internal nodal force vector for the fluid phase, f intp , is a combination of compressibility

and permeability forces. This vector is computed as

f intp = Sṗ+Hp (4.68)

The external nodal forces for the fluid phase resulting from an applied body force, g,

are evaluated from (4.10) using single-point integration as

f extp = 4J0tρf∇NT
p (0, 0)kg (4.69)

where ρf is the pore fluid mass density. The contributions from a surface flux, q, are

identical to those computed for a standard element formulation.

4.4 Evaluation of Solid Phase for Eight-Node Hexahedral Element

As with the 2D element presented in the previous sections, the terms representing the solid

phase in (4.3) and (4.4) are evaluated in the efficient hexahedral element using single-point

numerical and analytical integration techniques. Locking is addressed via the assumption

of an enhanced assumed strain field. Physical hourglass stabilization is used to control

the spurious modes associated with reduced integration. Many of the terms used in this

formulation are shared with its 2D counterpart. These terms are redefined as applicable.

4.4.1 Polynomial Expansion of the Jacobian Determinant

The integration scheme for the 3D element is similar to the 2D element in that the stabilizing

portion of the element stiffness is evaluated analytically. To facilitate this process, the

Jacobian determinant must be expressed as a polynomial function of the local coordinates

for the element. Yuan et al. (1994) provide a derivation of the necessary expression. The

applicable portion of their work is summarized in this section.
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The isoparametric map for an 8-node linear element can be expressed as











x

y

z











=











N · x

N · y

N · z











=















a0 + a1ξ + a2η + a3ζ + a4hζη + a5hζξ + a6hξη + a7hξηζ

b0 + b1ξ + b2η + b3ζ + b4hζη + b5hζξ + b6hξη + b7hξηζ

c0 + c1ξ + c2η + c3ζ + c4hζη + c5hζξ + c6hξη + c7hξηζ















(4.70)

where

a0 =
1

8
x · r, a1 =

1

8
x · ξ, a2 =

1

8
x · η, a3 =

1

8
x · ζ,

a4 =
1

8
x · hζη, a5 =

1

8
x · hζξ, a6 =

1

8
x · hξη, a7 =

1

8
x · hξηζ

(4.71)

The b- and c-coefficients are defined similarly in terms of y and z, respectively. As discussed

in Yuan et al. (1994), from the mapping of (4.70), the Jacobian matrix can be written as

J =









a1 + a5ζ + a6η + a7hζη b1 + b5ζ + b6η + b7hζη c1 + c5ζ + c6η + c7hζη

a2 + a4ζ + a6ξ + a7hζξ b2 + b4ζ + b6ξ + b7hζξ c2 + c4ζ + c6ξ + c7hζξ

a3 + a4η + a5ξ + a7hξη b3 + b4η + b5ξ + b7hξη c3 + c4η + c5ξ + c7hξη









(4.72)

from which the inverse can be found using the adjunct as

J−1 =







ξ,x η,x ζ,x
ξ,y η,y ζ,y
ξ,z η,z ζ,z






=

1

J









J22J33 − J23J32 J13J32 − J12J33 J12J23 − J13J22

J23J31 − J21J33 J11J33 − J13J31 J13J21 − J11J23

J21J32 − J22J31 J12J31 − J11J32 J11J22 − J12J21









(4.73)

where J is the Jacobian determinant and Jij are the components of the Jacobian Matrix.

By collecting the a-, b-, and c-coefficients into vectors of the form

ei =











ai
bi
ci











, i = 0 to 7 (4.74)

and making the following definition

pijk = ei · (ej × ek), i 6= j 6= k, i, j, k = 1 to 7 (4.75)

the Jacobian determinant can be expressed in the expanded polynomial form

J = J0 + J1ξ + J2η + J3ζ + J4hηζ + J5hξζ + J6hξη + J7ξ
2 + J8η

2 + J9ζ
2 + J10η

2ζ + J11ζ
2η

+ J12ζ
2ξ + J13ξ

2ζ + J14ξ
2η + J15η

2ξ + J16hξηζ + J17hζηξ
2 + J18hζξη

2 + J19hξηζ
2

(4.76)
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where

J0 = p123 J1 = p125 + p163 J2 = p124 + p623 J3 = p523 + p143

J4 = p723 + p452 + p436 J5 = p173 + p451 + p356 J6 = p127 + p416 + p256 J7 = −p156

J8 = −p426 J9 = −p453 J10 = p247 J11 = −p347

J12 = p357 J13 = −p157 J14 = p167 J15 = −p267

J16 = 2p456 J17 = p756 J18 = p476 J19 = p457
(4.77)

The form of the Jacobian determinant given by (4.76) facilitates the analytical evaluation

of the integrals in the element formulation via the integration of simple polynomial functions

over the bi-unit cube (−1 ≤ ξ ≤ 1; −1 ≤ η ≤ 1; −1 ≤ ζ ≤ 1). For example, the element

volume is evaluated as

V =

∫

Ω
E

dΩE =

∫ 1

−1

∫ 1

−1

∫ 1

−1

Jdξdηdζ = 8J0 +
8

3
(J7 + J8 + J9) (4.78)

4.4.2 Element Kinematics

The displacement field for the element is expressed in the form given by Belytschko and

Bachrach (1986)

u = (a0x + a1xx+ a2xy + a3xz + c1xhξη + c2xhζη + c3xhζξ + c4xhξηζ)i

+ (a0y + a1yx+ a2yy + a3yz + c1yhξη + c2yhζη + c3yhζξ + c4yhξηζ)j

+ (a0z + a1zx+ a2zy + a3zz + c1zhξη + c2zhζη + c3zhζξ + c4zhξηζ)k (4.79)

where aix, aiy, aix, cix, ciy, and ciz are scalar coefficients, x, y, and z are global coordinates,

and

hξη = ξη (4.80)

hζη = ζη (4.81)

hζξ = ζξ (4.82)

hξηζ = ξηζ (4.83)

are the local coordinate products. Using this form, the nodal displacements,

dx = [u1, u2, u3, u4, u5, u6, u7, u8]
T (4.84)

dy = [v1, v2, v3, v4, v5, v6, v7, v8]
T (4.85)

dz = [w1, w2, w3, w4, w5, w6, w7, w8]
T (4.86)
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can be expressed as

dx = a0xr+ a1xx+ a2xy + a3xz+ c1xhξη + c2xhζη + c3xhζξ + c4xhξηζ (4.87)

dy = a0yr+ a1yx+ a2yy+ a3yz+ c1yhξη + c2yhζη + c3yhζξ + c4yhξηζ (4.88)

dz = a0zr+ a1zx+ a2zy + a3zz+ c1zhξη + c2zhζη + c3zhζξ + c4zhξηζ (4.89)

where

r = [1, 1, 1, 1, 1, 1, 1, 1]T (4.90)

x = [x1, x2, x3, x4, x5, x6, x7, x8]
T (4.91)

y = [y1, y2, y3, y4, y5, y6, y7, y8]
T (4.92)

z = [z1, z2, z3, z4, z5, z6, z7, z8]
T (4.93)

and

hξη = hξη(ξ,η, ζ) = [1,−1, 1,−1, 1,−1, 1,−1]T (4.94)

hζη = hζη(ξ,η, ζ) = [1, 1,−1,−1,−1,−1, 1, 1]T (4.95)

hζξ = hζξ(ξ,η, ζ) = [1,−1,−1, 1,−1, 1, 1,−1]T (4.96)

hξηζ = hξηζ(ξ,η, ζ) = [−1, 1,−1, 1, 1,−1, 1,−1]T (4.97)

with local coordinate vectors

ξ = [−1, 1, 1,−1,−1, 1, 1,−1]T (4.98)

η = [−1,−1, 1, 1,−1,−1, 1, 1]T (4.99)

ζ = [−1,−1,−1,−1, 1, 1, 1, 1]T (4.100)

The kinematic equations for the element are defined in two parts. The first part is

obtained by computing the components of the small strain field, ε, from (4.79) as

ε = B̃a (4.101)

where

a = [a1x, a2y , a3z, axy, ayz, axz, c1x, c1y , c1z, c2x, c2y , c2z , c3x, c3y , c3z , c4x, c4y, c4z ]
T (4.102)

with

axy =
1

2
(a2x + a1y); ayz =

1

2
(a3y + a2z); axz =

1

2
(a3x + a1z) (4.103)

In (4.101), B̃ is a 6× 18 matrix which can be expressed in terms of 5 sub-matrices as

B̃ = [A,Rξη ,Rζη,Rζξ,Rξηζ ] (4.104)
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where A is a 6× 6 identity matrix, and the remaining 6× 3 sub-matrices are defined as

Rξη =





















hξη,x 0 0

0 hξη,y 0

0 0 hξη,z
hξη,y hξη,x 0

0 hξη,z hξη,y
hξη,z 0 hξη,x





















(4.105)

Rζη =





















hζη,x 0 0

0 hζη,y 0

0 0 hζη,z
hζη,y hζη,x 0

0 hζη,z hζη,y
hζη,z 0 hζη,x





















(4.106)

Rζξ =





















hζξ,x 0 0

0 hζξ,y 0

0 0 hζξ,z
hζξ,y hζξ,x 0

0 hζξ,z hζξ,y
hζξ,z 0 hζξ,x





















(4.107)

Rξηζ =





















hξηζ,x 0 0

0 hξηζ,y 0

0 0 hξηζ,z
hξηζ,y hξηζ,x 0

0 hξηζ,z hξηζ,y
hξηζ,z 0 hξηζ,x





















(4.108)

with the derivatives of the local coordinate products defined as (for α = x, y, z)

hξη,α =
∂hξη
∂α

= ξη,α +ηξ,α (4.109)

hζη,α =
∂hζη
∂α

= ζη,α +ηζ,α (4.110)

hζξ,α =
∂hζξ
∂α

= ζξ,α+ξζ,α (4.111)

hξηζ,α =
∂hξηζ
∂α

= ξηζ,α +ξζη,α+ηζξ,α (4.112)
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The element kinematic equations are completed by defining the following mapping be-

tween the coefficient vector a and the nodal displacements d

a = Ld =















































































bx 0 0

0 by 0

0 0 bz

by bx 0

0 bz by

bz 0 bx

γξη 0 0

0 γξη 0

0 0 γξη

γζη 0 0

0 γζη 0

0 0 γζη

γζξ 0 0

0 γζξ 0

0 0 γζξ

γξηζ 0 0

0 γξηζ 0

0 0 γξηζ

























































































dx

dy

dz











(4.113)

in which the b-vectors1 are the derivatives of the linear shape function vector

N(ξ, η, ζ) =
1

8

(

r+ ξξ + ηη + ζζ + hξηhξη + hζηhζη + hζξhζξ + hξηζhξηζ

)T

(4.114)

averaged over the element domain, i.e., for α = x, y, z

bα =
1

V

∫

Ω
E

N,α (ξ, η, ζ) dΩE (4.115)

where V is the element volume as defined in (4.78), and the γ-vectors are the projection

operators of Flanagan and Belytschko (1981), which, using a nomenclature similar to that

of Reese (2005), can be expressed as

γξη =
1

8

(

Ghξη

)T
(4.116)

γζη =
1

8

(

Ghζη

)T
(4.117)

γζξ =
1

8

(

Ghζξ

)T
(4.118)

γξηζ =
1

8

(

Ghξηζ

)T
(4.119)
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where

G = 1−
[

bT
x ,b

T
y ,b

T
z

]











xT

yT

zT











(4.120)

and 1 is the 8× 8 identity matrix.

Evaluation of the b-vectors involves the volume integrals of the derivatives of the linear

shape function vector (4.114), which, for α = x, y, z, can be expressed as

N,α=
1

8

(

ξξ,α +ηη,α +ζζ,α +hζηhζη,α + hζξhζξ,α + hξηhξη,α + hξηζhξηζ,α

)T

(4.121)

From the inverse Jacobian matrix (4.73), the derivatives of the local coordinates (ξ, η, ζ) and

local coordinate products (hζη, hζξ, hξη, hξηζ) can be expressed in terms of polynomial func-

tions of the local coordinates. When substituted into (4.121), this facilitates the analytical

evaluation of (4.115) via a series of simple polynomial integrals, resulting in

bx =
8

V

([

b2c3 − c2b3 +
1

3
(b6c5 − c6b5)

]

ξ +

[

b3c1 − c3b1 +
1

3
(b4c6 − c4b6)

]

η

+

[

b1c2 − c1b2 +
1

3
(b5c4 − c5b4)

]

ζ +
1

3
(b5c1 − c5b1 + b2c4 − c2b4)hξη

+
1

3
(b6c2 − c6b2 + b3c5 − c3b5)hζη +

1

3
(b1c6 − c1b6 + b4c3 − c4b3)hζξ

)

(4.122)

by =
8

V

([

c2a3 − a2c3 +
1

3
(c6a5 − a6c5)

]

ξ +

[

c3a1 − a3c1 +
1

3
(c4a6 − a4c6)

]

η

+

[

c1a2 − a1c2 +
1

3
(c5a4 − a5c4)

]

ζ +
1

3
(c5a1 − a5c1 + c2a4 − a2c4)hξη

+
1

3
(c6a2 − a6c2 + c3a5 − a3c5)hζη +

1

3
(c1a6 − a1c6 + c4a3 − a4c3)hζξ

)

(4.123)

bz =
8

V

([

b2c3 − c2b3 +
1

3
(b6c5 − c6b5)

]

ξ +

[

a3b1 − b3a1 +
1

3
(a4b6 − b4a6)

]

η

+

[

a1b2 − b1a2 +
1

3
(a5b4 − b5a4)

]

ζ +
1

3
(a5b1 − b5a1 + a2b4 − b2a4)hξη

+
1

3
(a6b2 − b6a2 + a3b5 − b3a5)hζη +

1

3
(a1b6 − b1a6 + a4b3 − b4a3)hζξ

)

(4.124)

in which the an-, bn-, and cn-coefficients are taken from the isoparametric mapping of (4.70).

1In the 2D single-point element formulation, the b-vectors are defined as the derivatives of the shape

function vector at the center of the element. In 3D, a similar definition has been found to be insufficient,

leading to an unstable element. This observation corresponds with the work of Belytschko and Bindeman

(1993), who introduced the volume-averaged form adopted in (4.115) as a remedy.
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The full kinematic link between the small strain field and nodal displacements is ex-

pressed by combining (4.101) and (4.113), resulting in

ε = B̃Ld (4.125)

This form for the element kinematics provides the means to decompose the strain field into

two portions, a constant portion, and a non-constant (stabilizing) portion associated with

the hourglass modes for the element. This decomposition is expressed as

ε = (B0 +FLb)d (4.126)

The constant portion, B0, is the product of the sub-matrix A in the first six columns

of B̃ with the first three rows of L, and is equivalent to the standard kinematic matrix B

evaluated at the center of the element. The 6×24 sub-matrix B0 = [B0 1, . . . ,B0 I , . . . ,B0 8]

has the form

B0 I =





















bx I 0 0

0 by I 0

0 0 bz I

by I bx I 0

0 bz I by I

bz I 0 bx I





















(4.127)

where, e.g., bx I is component I of the 1× 8 vector bx.

The non-constant portion of (4.126) involves the sub-matrices formed by the remaining

columns of B̃, here referred to as F, and the remaining rows of L, which are designated as

Lb. The 6× 12 sub-matrix F is given by

F = [Rξη ,Rζη,Rζξ,Rξηζ ] (4.128)

and the 12× 24 sub-matrix Lb = [Lb 1, . . . ,Lb I , . . . ,Lb 8] has the form

Lb I =



















































γξη I 0 0

0 γξη I 0

0 0 γξη I

γζη I 0 0

0 γζη I 0

0 0 γζη I

γζξ I 0 0

0 γζξ I 0

0 0 γζξ I

γξηζ I 0 0

0 γξηζ I 0

0 0 γξηζ I



















































(4.129)

where, e.g., γξη I is component I of the 1× 8 vector γξη.
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4.4.3 Assumed Strain Field

The kinematic relation presented in (4.126) facilitates efficiency in the element by allowing

for separate evaluation of the constant and non-constant portions of the strain field, however,

the locking phenomena associated with the non-constant portion must still be addressed for

the purposes of accuracy. The non-constant portion of the strain field is modified based on

the enhanced assumed strain concept (Simo and Armero, 1992; Simo et al., 1993) such that

parasitic shear and volumetric locking are eliminated.

After Reese (2005), the enhanced strain field concept is reduced from a two-field formula-

tion to an equivalent reduced-integration one-field formulation. The resulting modification

to the element kinematic relation (4.126) is expressed as

ε =
[

B0 +
(

F̂− FenhK
−1
wwKwu

)

Lb

]

d (4.130)

where

Fenh =





















ξ,x ξ 0 0 η,x η 0 0 ζ,x ζ 0 0

0 ξ,y ξ 0 0 η,y η 0 0 ζ,y ζ 0

0 0 ξ,z ξ 0 0 η,z η 0 0 ζ,z ζ

ξ,y ξ ξ,x ξ 0 η,y η η,x η 0 ζ,y ζ ζ,x ζ 0

0 ξ,z ξ ξ,y ξ 0 η,z η η,y η 0 ζ,z ζ ζ,y ζ

ξ,z ξ 0 ξ,x ξ η,z η 0 η,x η ζ,z ζ 0 ζ,x ζ





















(4.131)

In (4.130), the kinematic hourglass matrix (4.128) is modified to eliminate the volumetric

locking associated with the trilinear terms in the volumetric portion of (4.108). The modified

matrix is defined as

F̂ = [Rξη,Rζη,Rζξ, R̂ξηζ ] (4.132)

with

R̂ξηζ =





















0 0 0

0 0 0

0 0 0

hξηζ,y hξηζ,x 0

0 hξηζ,z hξηζ,y
hξηζ,z 0 hξηζ,x





















(4.133)

The remaining terms of (4.130),

Kww =

∫

Ω
E

FT
enhĈFenhdΩE (4.134)

Kwu =

∫

Ω
E

FT
enhĈF

⋆dΩE (4.135)

where Ĉ is the initial material tangent operator, and

F⋆ = [Rξη,Rζη ,Rζξ,0] (4.136)
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where 0 is a 6 × 3 zero matrix, result from the addition of the internal degrees of freedom

corresponding to the enhanced assumed strain formulation. The evaluation of Kww and

Kwu is described in the following section.

4.4.4 Element Stiffness

Using the kinematic basis given by (4.130), the element stiffness, KE , is decomposed into

the sum

KE = K0 +Kstab (4.137)

where K0 and Kstab are the constant and stabilization portions, respectively. The constant

part of the element stiffness is evaluated using single-point integration as

K0 =

∫

Ω
E

BT
0 CB0dΩE = VBT

0 CB0 (4.138)

where C is the current material tangent operator and V is the element volume as defined

in (4.78). This portion of the element stiffness is updated during each step of the analysis.

The stabilization stiffness matrix for the element,

Kstab = LT
b

[

∫

Ω
E

FT
ĈFdΩE −KT

wuK
−T
ww

(

∫

Ω
E

FT
enhĈFenhdΩE

)

K−1
wwKwu

]

Lb (4.139)

where Ĉ is the initial material tangent operator, is evaluated through analytical integration

using the polynomial expansion of the Jacobian determinant given in (4.76). The stabiliza-

tion stiffness matrix is assembled only upon initialization of the element.

The evaluation of the first integral term in (4.139)

∫

Ω
E

F̂T
ĈF̂dΩE =

∫ 1

−1

∫ 1

−1

∫ 1

−1

F̂T
ĈF̂Jdξdηdζ (4.140)

involves multiplying the components of the matrix product F̂T
ĈF̂ with the expanded Ja-

cobian determinant of (4.76). Integration of the resulting terms leads to the following

definitions

Hαβ
ξη =

∫

Ω
E

hξη,αhξη,βdΩE = µ2ξ,α ξ,β +µ1η,α η,β +µ6

(

ξ,α η,β +η,α ξ,β
)

(4.141)

Hαβ
ζη =

∫

Ω
E

hζη,αhζη,βdΩE = µ3η,α η,β +µ2ζ,α ζ,β +µ4

(

η,α ζ,β +ζ,α η,β
)

(4.142)

Hαβ
ζξ =

∫

Ω
E

hζξ,αhζξ,βdΩE = µ3ξ,α ξ,β +µ1ζ,α ζ,β +µ5

(

ξ,α ζ,β +ζ,α ξ,β
)

(4.143)
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Hαβ
ξηζ =

∫

Ω
E

hξηζ,αhξηζ,βdΩE = µ14ξ,α ξ,β +µ15η,α η,β +µ13ζ,α ζ,β +µ18

(

ξ,α η,β +η,α ξ,β
)

+ µ17

(

ξ,α ζ,β +ζ,α ξ,β
)

+ µ16

(

η,α ζ,β +ζ,α η,β
)

(4.144)

Iαβηη =

∫

Ω
E

hξη,αhζη,βdΩE = µ2ξ,α ζ,β +µ4ξ,α η,β +µ5η,α η,β +µ6η,α ζ,β (4.145)

Iαβξξ =

∫

Ω
E

hξη,αhζξ,βdΩE = µ1η,α ζ,β +µ4ξ,α ξ,β +µ5η,α ξ,β +µ6ξ,α ζ,β (4.146)

Iαβζζ =

∫

Ω
E

hζη,αhζξ,βdΩE = µ3η,α ξ,β +µ4ζ,α ξ,β +µ5η,α ζ,β +µ6ζ,α ζ,β (4.147)

Iαβξη =

∫

Ω
E

hξηζ,αhξη,βdΩE = µ11ξ,α ξ,β +µ12η,α η,β +µ10ζ,α η,β

+ µ8ζ,α ξ,β +
8

27
J16
(

ξ,α η,β +η,α ξ,β
)

(4.148)

Iαβζη =

∫

Ω
E

hξηζ,αhζη,βdΩE = µ9ξ,α η,β +µ11ξ,α ζ,β +µ7η,α η,β

+ µ8ζ,α ζ,β +
8

27
J16
(

η,α ζ,β +ζ,α η,β
)

(4.149)

Iαβζξ =

∫

Ω
E

hξηζ,αhζξ,βdΩE = µ9ξ,α ξ,β +µ7η,α ξ,β +µ12η,α ζ,β

+ µ10ζ,α ζ,β +
8

27
J16
(

ξ,α ζ,β +ζ,α ξ,β
)

(4.150)

for α, β = x, y, z.

TheH-terms in (4.141)-(4.144) are commutative in terms of x, y, and z, i.e., Hαβ
ξη = Hβα

ξη ,

while the I-terms of (4.145)-(4.150) are not, i.e., Iαβξζ 6= Iβαξζ . The µ-coefficients in (4.141)-

(4.150) are combinations of the Jn-coefficients of (4.76) and (4.77). These new terms are

defined as

µ1 = 8

(

1

3
J0 +

1

5
J7 +

1

9
J8 +

1

9
J9

)

(4.151)

µ2 = 8

(

1

3
J0 +

1

5
J8 +

1

9
J7 +

1

9
J9

)

(4.152)

µ3 = 8

(

1

3
J0 +

1

5
J9 +

1

9
J7 +

1

9
J8

)

(4.153)
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µ4 = 8

(

1

9
J4 +

1

27
J17

)

(4.154)

µ5 = 8

(

1

9
J5 +

1

27
J18

)

(4.155)

µ6 = 8

(

1

9
J6 +

1

27
J19

)

(4.156)

µ7 = 8

(

1

9
J1 +

1

15
J12 +

1

27
J15

)

(4.157)

µ8 = 8

(

1

9
J1 +

1

15
J15 +

1

27
J12

)

(4.158)

µ9 = 8

(

1

9
J2 +

1

15
J11 +

1

27
J14

)

(4.159)

µ10 = 8

(

1

9
J2 +

1

15
J14 +

1

27
J11

)

(4.160)

µ11 = 8

(

1

9
J3 +

1

15
J10 +

1

27
J13

)

(4.161)

µ12 = 8

(

1

9
J3 +

1

15
J13 +

1

27
J10

)

(4.162)

µ13 = 8

(

1

9
J0 +

1

15
J7 +

1

15
J8 +

1

27
J9

)

(4.163)

µ14 = 8

(

1

9
J0 +

1

15
J8 +

1

15
J9 +

1

27
J7

)

(4.164)

µ15 = 8

(

1

9
J0 +

1

15
J7 +

1

15
J9 +

1

27
J8

)

(4.165)

µ16 = 8

(

1

27
J4 +

64

45
J17

)

(4.166)

µ17 = 8

(

1

27
J5 +

64

45
J18

)

(4.167)

µ18 = 8

(

1

27
J6 +

64

45
J19

)

(4.168)

The full evaluation of (4.140) yields a symmetric 12× 12 matrix which can be expressed

in terms of sixteen 3× 3 sub-matrices as

∫

Ω
E

FT
ĈFdΩE =











K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44











(4.169)
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The sub-matrices in this array are defined as

K11 =









C1H
xx
ξη + C3(H

yy
ξη +Hzz

ξη ) C4H
xy
ξη C4H

xz
ξη

C4H
xy
ξη C1H

yy
ξη + C3(H

xx
ξη +Hzz

ξη ) C4H
yz
ξη

C4H
xz
ξη C4H

yz
ξη C1H

zz
ξη + C3(H

xx
ξη +Hyy

ξη )









(4.170)

K12 = KT
21 =









C1I
xx
ηη + C3(I

yy
ηη + Izzηη ) C2I

xy
ηη + C3I

yx
ηη C2I

xz
ηη + C3I

zx
ηη

C2I
yx
ηη + C3I

xy
ηη C1I

yy
ηη + C3(I

xx
ηη + Izzηη) C2I

yz
ηη + C3I

zy
ηη

C2I
zx
ηη + C3I

xz
ηη C2I

zy
ηη + C3I

yz
ηη C1I

zz
ηη + C3(I

xx
ηη + Iyyηη )









(4.171)

K13 = KT
31 =









C1I
xx
ξξ + C3(I

yy
ξξ + Izzξξ ) C2I

xy
ξξ + C3I

yx
ξξ C2I

xz
ξξ + C3I

zx
ξξ

C2I
yx
ξξ + C3I

xy
ξξ C1I

yy
ξξ + C3(I

xx
ξξ + Izzξξ ) C2I

yz
ξξ + C3I

zy
ξξ

C2I
zx
ξξ + C3I

xz
ξξ C2I

zy
ξξ + C3I

yz
ξξ C1I

zz
ξξ + C3(I

xx
ξξ + Iyyξξ )









(4.172)

K14 = KT
41 =









C3(I
yy
ξη + Izzξη ) C3I

xy
ξη C3I

xz
ξη

C3I
yx
ξη C3(I

xx
ξη + Izzξη ) C3I

yz
ξη

C3I
zx
ξη C3I

zy
ξη C3(I

xx
ξη + Iyyξη )









(4.173)

K22 =









C1H
xx
ζη + C3(H

yy
ζη +Hzz

ζη ) C4H
xy
ζη C4H

xz
ζη

C4H
xy
ζη C1H

yy
ζη + C3(H

xx
ζη +Hzz

ζη ) C4H
yz
ζη

C4H
xz
ζη C4H

yz
ζη C1H

zz
ζη + C3(H

xx
ζη +Hyy

ζη )









(4.174)

K23 = KT
32 =









C1I
xx
ζζ + C3(I

yy
ζζ + Izzζζ ) C2I

xy
ζζ + C3I

yx
ζζ C2I

xz
ζζ + C3I

zx
ζζ

C2I
yx
ζζ + C3I

xy
ζζ C1I

yy
ζζ + C3(I

xx
ζζ + Izzζζ ) C2I

yz
ζζ + C3I

zy
ζζ

C2I
zx
ζζ + C3I

xz
ζζ C2I

zy
ζζ + C3I

yz
ζζ C1I

zz
ζζ + C3(I

xx
ζζ + Iyyζζ )









(4.175)

K24 = KT
42 =









C3(I
yy
ζη + Izzζη ) C3I

xy
ζη C3I

xz
ζη

C3I
yx
ζη C3(I

xx
ζη + Izzζη ) C3I

yz
ζη

C3I
zx
ζη C3I

zy
ζη C3(I

xx
ζη + Iyyζη )









(4.176)

K33 =









C1H
xx
ζξ + C3(H

yy
ζξ +Hzz

ζξ ) C4H
xy
ζξ C4H

xz
ζξ

C4H
xy
ζξ C1H

yy
ζξ + C3(H

xx
ζξ +Hzz

ζξ ) C4H
yz
ζξ

C4H
xz
ζξ C4H

yz
ζξ C1H

zz
ζξ + C3(H

xx
ζξ +Hyy

ζξ )









(4.177)

K34 = KT
43 =









C3(I
yy
ζξ + Izzζξ ) C3I

xy
ζξ C3I

xz
ζξ

C3I
yx
ζξ C3(I

xx
ζξ + Izzζξ ) C3I

yz
ζξ

C3I
zx
ζξ C3I

zy
ζξ C3(I

xx
ζξ + Iyyζξ )









(4.178)
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K44 =









C3(H
yy
ξηζ +Hzz

ξηζ) C3H
xy
ξηζ C3H

xz
ξηζ

C3H
xy
ξηζ C3(H

xx
ξηζ +Hzz

ξηζ) C3H
yz
ξηζ

C3H
xz
ξηζ C3H

yz
ξηζ C3(H

xx
ξηζ +Hyy

ξη )









(4.179)

In the sub-matrices above, the C-coefficients are defined as

C1 = κ+
4

3
G (4.180)

C2 = κ−
2

3
G (4.181)

C3 = G (4.182)

C4 = C2 + C3 = κ+
1

3
G (4.183)

where κ and G are the bulk and shear moduli of the solid phase, respectively.

The evaluation of the second integral term in (4.139)

KT
wuK

−T
ww

(

∫

Ω
E

FT
enhĈFenhdΩE

)

K−1
wwKwu (4.184)

is conducted in a similar manner. This evaluation is simplified by recognizing that the

integral inside the parentheses is equal to Kww, see (4.134). Making this substitution, and

noting that Kww is symmetric, simplifies (4.184) to

KT
wuK

−T
wwKwu (4.185)

The array Kww is a 9× 9 matrix which can be expressed as

Kww =













































T xx
ξξ T xy

ξξ T xz
ξξ

T xy
ξξ T yy

ξξ T yz
ξξ

T xz
ξξ T yz

ξξ T zz
ξξ













T xx
ξη T xy

ξη T xz
ξη

T yx
ξη T yy

ξη T yz
ξη

T zx
ξη T zy

ξη T zz
ξη













T xx
ξζ T xy

ξζ T xz
ξζ

T yx
ξζ T yy

ξζ T yz
ξζ

T zx
ξζ T zy

ξζ T zz
ξζ







µ1 µ6 µ5







T xx
ηη T xy

ηη T xz
ηη

T xy
ηη T yy

ηη T yz
ηη

T xz
ηη T yz

ηη T zz
ηη













T xx
ηζ T xy

ηζ T xz
ηζ

T yx
ηζ T yy

ηζ T yz
ηζ

T zx
ηζ T zy

ηζ T zz
ηζ







µ2 µ4







T xx
ζζ T xy

ζζ T xz
ζζ

T xy
ζζ T yy

ζζ T yz
ζζ

T xz
ζζ T yz

ζζ T zz
ζζ







µ3

symm.







































(4.186)
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where

T xx
ξξ = C1ξ,

2
x+C3(ξ,

2
y +ξ,2z ) (4.187)

T xy
ξξ = C4ξ,x ξ,y (4.188)

T xz
ξξ = C4ξ,x ξ,z (4.189)

T yy
ξξ = C1ξ,

2
y +C3(ξ,

2
x+ξ,2z ) (4.190)

T yz
ξξ = C4ξ,y ξ,z (4.191)

T zz
ξξ = C1ξ,

2
z +C3(ξ,

2
x +ξ,2y ) (4.192)

with Tαβ
ηη and Tαβ

ζζ similarly defined, and

T xx
ξη = C1ξ,x η,x +C3(ξ,y η,y +ξ,z η,z ) (4.193)

T xy
ξη = C2ξ,x η,y +C3ξ,y η,x (4.194)

T xz
ξη = C2ξ,x η,z +C3ξ,z η,x (4.195)

T yx
ξη = C2ξ,y η,x+C3ξ,x η,y (4.196)

T yy
ξη = C1ξ,y η,y +C3(ξ,x η,x+ξ,z η,z ) (4.197)

T yz
ξη = C2ξ,y η,z +C3ξ,z η,y (4.198)

T zx
ξη = C2ξ,z η,x +C3ξ,x η,z (4.199)

T zy
ξη = C2ξ,z η,y +C3ξ,y η,z (4.200)

T zz
ξη = C1ξ,z η,z +C3(ξ,x η,x +ξ,y η,y ) (4.201)

with Tαβ
ξζ and Tαβ

ηζ similarly defined.

The array Kwu is a 9 × 12 matrix which can be expressed in terms of twelve 3 × 3

sub-matrices as

Kwu =







K̂11 K̂12 K̂13 0

K̂21 K̂22 K̂23 0

K̂31 K̂32 K̂33 0






(4.202)
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where 0 is a 3× 3 zero matrix and

K̂11 =









µ1T
xx
ξη + µ6T

xx
ξξ µ1T

xy
ξη + µ6T

xy
ξξ µ1T

xz
ξη + µ6T

xz
ξξ

µ1T
yx
ξη + µ6T

xy
ξξ µ1T

yy
ξη + µ6T

yy
ξξ µ1T

yz
ξη + µ6T

yz
ξξ

µ1T
zx
ξη + µ6T

xz
ξξ µ1T

zy
ξη + µ6T

yz
ξξ µ1T

zz
ξη + µ6T

zz
ξξ









(4.203)

K̂12 =









µ6T
xx
ξζ + µ5T

xx
ξη µ6T

xy
ξζ + µ5T

xy
ξη µ6T

xz
ξζ + µ5T

xz
ξη

µ6T
yx
ξζ + µ5T

yx
ξη µ6T

yy
ξζ + µ5T

yy
ξη µ6T

yz
ξζ + µ5T
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4.4.5 Internal and External Forces

The internal force vector for the solid phase, f intu , is evaluated using a decomposition into

constant and stabilization portions

f intu = f int0 + f intstab (4.212)

The constant portion of the internal force vector is evaluated using single-point integration

as

f int0 =

∫

Ω
E

BT
0 σ

′(ε)dΩE = VBT
0 σ

′(ε) (4.213)

The stabilization portion is computed directly from the stabilization stiffness matrix,

f intstab = Kstabd (4.214)

where d is the current nodal displacement vector for the element.

The external nodal forces for the solid phase resulting from an applied body force, g,

are evaluated analytically from (4.9) as

f extI = g

[

J0 +
1

3

(

J1ξI + J2ηI + J3ζI + J7 + J8 + J9

)

+
1

9

(

J4hζη I + J5hζξ I + J6hξη I + (J10 + J13)ζI + (J11 + J14)ηI + (J12 + J15)ξI

)

+
1

27

(

J16hξηζ I + J17hζη I + J18hζξ I + J19hξη I

)

]

(4.215)

using the expanded form of the Jacobian determinant given by (4.76). Surface force contri-

butions from a traction, t, are identical to a standard displacement element.

4.4.6 Mass Matrix for the Mixture

The mass matrix for the mixture, (4.5), is approximated as a lumped mass matrix. The

nodal masses in this matrix are determined using the strategy used for nodal forces, thus,

MII = ρ

[

J0 +
1

3

(

J1ξI + J2ηI + J3ζI + J7 + J8 + J9

)

+
1

9

(

J4hζη I + J5hζξ I + J6hξη I + (J10 + J13)ζI + (J11 + J14)ηI + (J12 + J15)ξI

)

+
1

27

(

J16hξηζ I + J17hζη I + J18hζξ I + J19hξη I

)

]

(4.216)

where ρ is the mixture mass density.



www.manaraa.com

51

4.5 Evaluation of Fluid Phase for Eight-Node Hexahedral Element

The pore fluid terms in the discretized field equations, (4.3) and (4.4), are evaluated us-

ing linear interpolation functions and a combination of single-point and full numerical in-

tegration. Because the pressure-field interpolation is of the same order as the displace-

ment interpolation, a stabilization technique is used to enhance element stability in the

incompressible-impermeable limit (see Section 4.6).

4.5.1 Coupling Matrix

The 24× 8 coupling matrix, Q, is approximated from (4.6) using single-point integration as

Q = VBT
0 1Np(0, 0, 0) (4.217)

where 1 = [1, 1, 1, 0, 0, 0]T , and Np(0, 0, 0) is a 1× 8 vector of linear shape functions, (4.24),

evaluated at ξ = η = ζ = 0.

4.5.2 Compressibility Matrix

The compressibility matrix, S, is evaluated from (4.7) using single-point integration as

S = V
n

Kf

NT
p (0, 0, 0)Np(0, 0, 0) (4.218)

The computation of the compressibility matrix can be further simplified by recognizing that

S is a fully-populated 8× 8 matrix with identical components, i.e.,

Sij = V
n

64Kf

(4.219)

4.5.3 Permeability Matrix

The 8 × 8 permeability matrix, H, is evaluated from (4.8) using full numerical integration

as

H =
8
∑

I=1

J∇NT
p Ik∇Np I (4.220)

where ∇Np is the 3 × 8 gradient of the shape function vector Np and k is the 3 × 3

permeability matrix. For isotropic permeability conditions, k reduces to a single scalar

value. This term is only evaluated upon initialization of the element or upon changes in

permeability.
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4.5.4 Internal and External Forces

The internal nodal force vector for the fluid phase, f intp , is a combination of compressibility

and permeability forces. This vector is computed as

f intp = Sṗ+Hp (4.221)

The external nodal forces for the fluid phase resulting from an applied body force are

evaluated from (4.10) using single-point integration as

f extp = V ρf∇NT
p (0, 0, 0)kg (4.222)

where ρf is the pore fluid mass density. The contributions from a surface flux, q, are

identical to those computed for a standard element formulation

4.6 Stabilization in the Incompressible-Impermeable Limit

As the pore fluid approaches incompressibility, S → 0, and as the mixture approaches im-

permeability, H → 0. The stability of the coupled fluid-solid elements must be addressed

in this limiting state, as the use of equal-order interpolation functions for the displacement

and pressure fields precludes satisfaction the inf-sup condition. A non-residual based stabi-

lization scheme, modeled after the direct α-method (Huang et al., 2004; Zienkiewicz et al.,

1994), is used to enhance stability in the incompressible-impermeable limit for both element

types.

The direct α-method is a residual based stabilization scheme derived by adding the

product of an arbitrary constant, α, with the divergence of the time derivative of the

equation of motion for the system (4.1) to the combined equation of motion for the fluid

and mixture (4.2). This process results in the addition of two stabilization terms to the

discretized system, a pressure Laplacian term

H̃ =

∫

V

∇NT
p α∇Np dV (4.223)

and a stress-dependent term

−

∫

Ω
E

∇NT
p αD

T σ̇′dΩE (4.224)

where, for the 2D element

D =







∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x






(4.225)
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and for the 3D element

D =





















∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

∂/∂y ∂/∂x 0

0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x





















(4.226)

Because the stabilization terms are computed from the residual of the equation of motion,

stability is enhanced without affecting the consistency of the element.

The pressure Laplacian term of (4.223) is evaluated in the same manner as the per-

meability matrix for each element. For the 2D element, single-point integration is used as

indicated in (4.65). For the 3D element, full integration is used as described with (4.220).

The stress-dependent term of (4.224) may be evaluated using the stress recovery techniques

of Wan (2002), however, this term is omitted from the current element formulations due to

issues of computational efficiency. The term causes the system of equations to become un-

symmetric, and the computational demand associated with its evaluation does not coincide

with the goals of the elements.

With the omission of the stress-dependent term, the stabilization scheme corresponds

to that originally developed by Brezzi and Pitäkaranta (1984) for the Stokes equations.

Implementation of this scheme results in a modification to the discretized field equation

of (4.4), which is now expressed as

QT ḋ+
(

S+H̃
)

ṗ+Hp = f extp (4.227)

Similar non-residual stabilization approaches have been shown to produce comparable re-

sults to residual based methods with mixed elements (Truty and Zimmermann, 2006), and

in the similarly constrained problem of incompressible elasticity (Commend et al., 2004).

Other examples of non-residual based stabilization approaches are discussed in Bochev et al.

(2006) and White and Borja (2008).

After the work of Huang et al. (2004) and Zienkiewicz et al. (1994), α is defined for the

current elements as

α =
α0h

2

Ks +
4

3
Gs

(4.228)

where Ks and Gs are the bulk and shear moduli of the solid phase, respectively, and α0

falls in the range 0.1 ≤ α0 ≤ 0.5. Because α is dependent on the element size, h, the

stabilization remains consistent in the sense that as the mesh is refined, H̃ → 0. Numerical

analysis suggests that the resulting range of α values is acceptable for most problems.

Alternative definitions for this stabilization parameter are given by Truty (2001) and Truty

and Zimmermann (2006).
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4.7 Set-Up for Temporal Integration

The numerical solution to the discretized field equations (4.3) and (4.227) requires inte-

gration in time. There are many temporal integration schemes which can be used for this

purpose (e.g., Newmark, 1959) but for all such schemes, the essential process is the same.

The known values of dn, ḋn, d̈n, pn, and ṗn at time tn must in some manner be updated

to the unknown values dn+1, ḋn+1, d̈n+1, pn+1, and ṗn+1 at time tn+1 = tn +∆t.

A useful way to facilitate this process is to set up the system in the form

M̄ẅ + C̄ẇ + K̄w = f (4.229)

where M̄ is the generalized mass matrix,

M̄ =

[

M 0

0 −
(

S+ H̃
)

]

(4.230)

C̄ is the generalized damping matrix,

C̄ =

[

C −Q

−QT −H

]

(4.231)

with C as an optional damping matrix for the solid phase, K̄ is the generalized stiffness

matrix,

K̄ =

[

K 0

0 0

]

(4.232)

and f is the generalized force vector,

f =

{

f extu − f intu

f intp − f extp

}

(4.233)

The generalized degrees-of-freedom are defined as

w =

{

d
∫

pdt

}

(4.234)

with time derivatives

ẇ =

{

ḋ

p

}

(4.235)

ẅ =

{

d̈

ṗ

}

(4.236)

The time integral of the pressure in (4.234) is an ignored artifact of rearranging the terms

related to (4.227). The terms of (4.227) have been multiplied by minus one to create

symmetry in (4.229)
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Figure 4.1: 2D element patch after Bathe (1996) with considered constant stress states.

4.8 Numerical Examples for Four-Node Quadrilateral Elements

The 2D formulation is implemented in the finite element platform OpenSees as two separate

elements; an efficient Q1 element, which uses the solid phase formulation only (Section 4.2),

and an efficient coupled fluid-solid Q1-P1 element, which uses the solid and fluid phase

formulations (Sections 4.2 and 4.3) with the pressure field stabilization and temporal inte-

gration schemes of Sections 4.6 and 4.7. To differentiate these new elements from standard

Q1 and Q1-P1 elements, they are given the designations Q1ssp and Q1-P1ssp, where ssp is

an abbreviation for hourglass stabilized single-point integration.

Several numerical test problems are analyzed with the OpenSees implementations of the

Q1ssp and Q1-P1ssp elements (respectively referred to as SSPquad and SSPquadUP in the

OpenSees interpreter). These tests are used to establish and analyze the convergence behav-

ior of the solid phase formulation, to demonstrate the effectiveness of the implemented anti-

locking procedures, to verify stability of the pressure field in the incompressible-impermeable

limit, and to test the applicability of the elements to a complex constitutive model typical

to geotechnical analysis.

4.8.1 Patch Test

The patch test is analyzed to establish the consistency, stability, and robustness of the

Q1ssp element formulation using the element patch shown in Figure 4.1. Several iterations

of consistent refinement are analyzed using three constant stress states. The conditions of

the patch test are satisfied for all considered cases.

4.8.2 Cantilever Beam Analysis

A cantilever beam model is used to assess the effectiveness of the anti-locking strategy

and analyze the convergence behavior of the stabilized solid phase formulation. Two mesh

configurations are analyzed: a mesh with rectangular elements, Figure 4.2(a), and a mesh

with skewed elements, Figure 4.2(b). These models consider the anti-symmetry of the

problem as shown.
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Figure 4.2: Cantilever beam meshes. (a) Rectangular mesh (coarsest mesh shown). (b)
Skewed mesh.

A vertical load at x = 0 and the corresponding support reactions at x = L are applied

in accordance with the stress field solutions given by Timoshenko and Goodier (1951)

σx(x, y) = −
Pxy

I
(4.237)

σy(x, y) = 0 (4.238)

τxy(x, y) = −
P
(

c2 − y2
)

2I
(4.239)

in which I = D3/12 is the second moment of the area, with D = 2c as the depth of the

beam, and P = 200 kPa is the applied force at the free end.

The expected axial and vertical displacements, u and v, respectively, for a plane stress

cantilever beam considering shear deformation (after Timoshenko and Goodier, 1951) are

given by

u =
P (L2− x2)y

2EI
−

νPy3

6EI
+

Py3

6IG
(4.240)

v =
νPxy2

2EI
+

P (x3− L3)

6EI
−

PL2(x− L)

2EI
−

Pc2(x− L)

2IG
(4.241)

in which L is the beam length, E is the elastic modulus, G the shear modulus, and ν

is Poisson’s ratio. Plane strain conditions are imposed by substituting ν̄ = ν/(1 − ν) and

Ē = E/(1−ν2) for the elastic parameters in (4.240) and (4.241). In all cases, E = 2000 MPa.

Recorded deflections at x = y = 0 are compared to (4.241) in a ratio to assess the coarse-

mesh accuracy of the Q1ssp element. This ratio, vapprox/vexact, is computed for both mesh

types, as well as for a standard Q1 element. Results are reported in Tables 4.1 and 4.2. The

Q1ssp element is more accurate due to the included anti-locking procedures. The elastic

response is somewhat too soft for the rectangular mesh due to the choice of e1 = 0.5 and

e2 = −0.5 in (4.36), however, this choice of coefficients is superior for general analysis.
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Table 4.1: Centerline tip deflection ratio for coarse rectangular mesh.

Plane Strain Plane Stress

Element ν = 0.25 ν = 0.499 ν = 0.25 ν = 0.499

Q1 0.295 0.013 0.284 0.315

Q1ssp 1.162 1.202 1.154 1.176

Table 4.2: Centerline tip deflection ratio for coarse skewed mesh.

Plane Strain Plane Stress

Element ν = 0.25 ν = 0.499 ν = 0.25 ν = 0.499

Q1 0.271 0.013 0.262 0.283

Q1ssp 0.962 1.013 0.953 0.978

The rectangular mesh, Figure 4.2(a), is used to assess the rate of convergence for the

Q1ssp element. The shown mesh, 1× 4, is considered, along with three levels of refinement

(2 × 8, 4 × 16, and 8 × 32) for two configurations: plane stress with ν = 0.25 and plane

strain with ν = 0.499. Convergence is evaluated in terms of the displacement error norm

||uexact − uapprox||

||uexact||
(4.242)

and energy error norm
||σexact − σapprox||E

||σexact||E
(4.243)

where

||σ||E =

√

∫

Ω

σTC−1σdΩ (4.244)

Convergence plots are shown in Figures 4.3 and 4.4. In all cases, the accuracy and

convergence rate for Q1ssp are at least an order greater than those for Q1. The Q1ssp

element is largely unaffected by the transition to nearly incompressible conditions. These

results confirm the success of the stabilized single-point scheme with anti-locking used in

the Q1ssp element and the solid phase formulation of the Q1-P1ssp element.

4.8.3 Flexible Footing Load Analysis

The stability of the pressure field for the Q1-P1ssp element is evaluated using a test prob-

lem in which a flexible footing load is applied to a saturated plane strain soil continuum.

The general layout of this problem is provided in Figure 4.5. Zero drainage boundaries and

symmetry conditions are enforced as shown. Cases are considered both with and without
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Figure 4.3: Displacement and energy error norms for rectangular cantilever beam mesh
(plane stress, ν = 0.25).
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Figure 4.5: Flexible footing load test problem.
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Figure 4.6: Pore pressure distributions below center of footing load at 1 second for Q1-P1ssp
and Q2-P1 elements.

stabilization of the coupled system to highlight the effectiveness of the implemented sta-

bilization scheme. The results are compared to a full-integration Q1-P1 element, which is

not fully acceptable in the incompressible-impermeable limit, and a Q2-P1 element, which

possesses inherent stability in the limiting case(quadUP and 9 4quadUP in the OpenSees

interpreter, respectively).

In all cases, the applied load increases linearly from zero to 0.1 kPa over 0.1 seconds,

then remains constant. The permeability is isotropic at 10−7 m/s, the fluid density is

ρf = 1.0 Mg/m3, and the fluid bulk modulus is set as Kf = 2.2 · 1012 kPa. The soil is linear

elastic with elastic modulus Es = 25000 kPa, Poisson’s ratio ν = 0.3, and saturated mass

density ρ = 2.67 Mg/m3. Rayleigh damping with C = 0.05M + 0.02K is assumed for the

solid phase.

The variations of nodal pore pressure along the symmetry plane for the Q1-P1ssp and

Q2-P1 elements are compared in Figure 4.6. The peak magnitude obtained using the Q1-

P1ssp element is somewhat less than that for the Q2-P1 element, however, the Q1-P1ssp

solution displays stability and the overall distribution is reasonably similar to the higher-

order element solution.

Spatial pore pressure distributions at t = 1 second are used to provide further comparison

between the various element types. Figure 4.7(a) shows the pore pressure field for the Q1-

P1ssp element with α = 0.0 (stabilization inactive). The observed pressure instabilities are

expected for this case. Figure 4.7(b) shows corresponding results for the same element,

however, stabilization is active with α = 6.8 · 10−5, the value obtained from (4.228). The

effect of stabilization on the solution is dramatic.
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Figure 4.7: Pore pressure distributions in flexible footing analysis at 1 second for (a) Q1-
P1ssp with α = 0.0, and (b) Q1-P1ssp with α = 6.8 · 10−5.
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Figure 4.8: Pore pressure distributions in flexible footing analysis at 1 second for (a) Q1-P1,
and (b) Q2-P1.

Figures 4.8(a) and 4.8(b) show the pressure fields for the Q1-P1 and Q2-P1 elements,

respectively. The expected pressure instabilities for the Q1-P1 element are observed, though

they are not as severe as for the Q1-P1ssp element with α = 0, likely due to the differences

between full and reduced integration for the pressure field. The pore pressure field obtained

using the Q1-P1ssp element, Figure 4.7(b), correlates well with that obtained for the Q2-

P1 element, Figure 4.8(b). The ability of the Q1-P1ssp element to produce similar results

to the higher-order element in this type of analysis is advantageous. In addition to the

computational savings related to reduced integration, the Q1-P1ssp element reduces the

degrees-of-freedom for the problem and simplifies mesh generation as compared to the nine-

node Q2-P1 element while preserving similar accuracy, as confirmed by Figures 4.6, 4.7(b),

and 4.8(b).
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Figure 4.9: Model layout and soil profile for site-response analysis test problem.

4.8.4 Site Response Analysis

The Q1-P1ssp element is evaluated in a dynamic, nonlinear context via a site-response

analysis. The model, shown in Figure 4.9, consists of a single column of elements supported

vertically at the base. Periodic boundary conditions are enforced in the horizontal direction

to restrict element deformation to a pure shear mode. A viscous dashpot is used to represent

the compliance of an underlying elastic layer after Lysmer and Kuhlemeyer (1969). The

nodes at and above the groundwater table are free to drain. Zero drainage is enforced on

the remaining boundaries.

The soil profile modeled by this test problem, also shown in Figure 4.9, consists of

two layers of cohesionless soil underlain by bedrock. The groundwater table is 2 m below

the surface and all material below the groundwater table is assumed to be saturated. A

pressure-dependent nested yield surface constitutive model capable of capturing cyclic mo-

bility (Elgamal et al., 2003; Prevost, 1985a) is used to approximate the behavior of the

liquefiable cohesionless soil. The assumed material parameters are provided in Figure 4.9.

The reported permeabilities are isotropic and chosen with relatively low values to assess

stability near the incompressible-impermeable limit. Stabilization α-parameters are com-

puted from (4.228), with values of α = 1.46 · 10−6 and α = 1.17 · 10−6 applying to the loose

and dense sand layers, respectively.

The Gilroy Array No. 1 fault parallel record from the 1989 Loma Prieta event (NGA

#765) from the PEER ground motion database is used as the input motion. The ground

motion is applied at the base of the soil column as an equivalent force time history obtained

from the product of ρrock and vs rock with the velocity time history of the input motion after

Joyner and Chen (1975). The Q1-P1 and Q2-P1 elements introduced in example 6.3 are

considered in addition to the Q1-P1ssp element. In order to provide comparable degrees-of-

freedom for a comparison of computational demand, a mesh with only 60 Q2-P1 elements

over the height of the soil column is considered.

Table 4.3 shows the execution times (user CPU time) for each element type. As expected,
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Table 4.3: Execution times for site-response analyses.

Element Q1-P1ssp Q1-P1 Q2-P1

Execution time 4.2 min 17.7 min 15.3 min
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Figure 4.10: Acceleration, velocity, and displacement response spectra at the surface of the
soil column in site-response analysis.

the Q2-P1 element is significantly more computationally expensive than the Q1-P1ssp el-

ement. It is interesting to note that the Q1-P1 element had the longest runtime of the

three elements. This is not due to some inherent computational inefficiency in this element

formulation, instead, it is due to the smaller analysis time step which was necessary for

convergence, likely due to lack of stability in the pressure field.

The efficiency of the Q1-P1ssp element is apparent from the results of Table 4.4, however,

efficiency alone does not verify the effectiveness of the element formulation. Figure 4.10

shows the acceleration, velocity, and displacement response spectra at the top of the soil

column for each element type. In this comparison, a more refined mesh of 120 Q2-P1

elements is considered. All three analyses produced reasonably similar results, though it

is somewhat difficult to gauge relative similarities and differences in this plot. There is

no analytical solution to which the results can be compared, however, the refined Q2-P1

mesh provides an acceptable baseline for comparison. Figure 4.11 shows the ratios of the

spectral accelerations returned by the Q1-P1ssp and Q1-P1 elements to that for the Q2-P1

element. There is better overall similarity for the Q1-P1ssp element, though there is greater

discrepancy at longer periods.
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Figure 4.11: Spectral acceleration ratios for Q1-P1ssp and Q1-P1 elements in site-response
analysis.

To further evaluate the Q1-P1ssp element, the stress, strain, and pore pressure responses

are compared to corresponding results for the Q2-P1 element. Figures 4.12 and 4.13 show a

summary of the constitutive response at three depths (3, 7, and 17 m). The stress and strain

values shown for the Q2-P1 element are from the central integration point. In these figures,

the left column of plots shows the shear stress-strain response (τ -γ), the central column

of plots shows the stress path in shear-normal stress space with the failure (solid line)

and phase transformation (dashed line) surfaces, and the right column of plots shows the

evolution of the pore pressure ratio with time. The pore pressure ratio, ru(t), is computed

as

ru(t) =
u(t)− u0

σ′

v0

(4.245)

where u(t) is the pore pressure at time t, u0 is the initial pore pressure at t = 0, and σ′

v0 is

the initial vertical effective stress. Stress recovery is used to determine nodal stress values

for use in this computation.

As shown in Figures 4.12 and 4.13, the responses returned by each element formulation

are similar. Both are able to capture the liquefaction and subsequent cyclic mobility of

the material at a depth of 7 m. The results obtained in this test problem verify that the

Q1-P1ssp element is robust enough to be used in dynamic analysis with a sophisticated

constitutive model, producing results which are comparable to higher-order elements at a

fraction of the computational cost.
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Figure 4.12: Summary of stress, strain, and pore pressure ratio response for Q1-P1ssp
element; (a) 3 m, (b) 7 m, and (c) 17 m below surface.
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Figure 4.13: Summary of stress, strain, and pore pressure ratio response for Q2-P1 element;
(a) 3 m, (b) 7 m, and (c) 17 m below surface.
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Figure 4.14: 3D element patch after MacNeal and Harder (1985). Exterior nodal locations
are for unit cube.

4.9 Numerical Examples for Eight-Node Hexahedral Elements

As with the 2D elements, the 3D formulation is implemented in OpenSees as two separate el-

ements; H1ssp, a displacement element using the solid phase formulation of Section 4.4, and

H1-P1ssp, a coupled fluid-solid element using the solid and fluid phase formulations (Sec-

tions 4.4 and 4.5) with the pressure field stabilization and temporal integration schemes of

Sections 4.6 and 4.7. The OpenSees implementations of these two new elements (respec-

tively SSPbrick and SSPbrickUP in the OpenSees interpreter) are analyzed using a set of

numerical test problems similar to those used for the 2D elements to test the effectiveness

of the formulations and to quantify the computational savings gained through their use.

4.9.1 Patch Test

The consistency, stability, and robustness of the H1-P1ssp solid phase formulation is estab-

lished using the solid element patch test of MacNeal and Harder (1985). With only the

minimum essential boundary conditions enforced, natural boundary conditions are applied

for the base mesh shown in Figure 4.14 as well as several iterations of consistent refinement.

For all considered element patches, the conditions of the patch test are satisfied.

4.9.2 Cantilever Beam Analysis

A cantilever beam model is used to assess the convergence rate and accuracy of the H1ssp

formulation. The model beam has a length L = 16 m and a depth D = 1 m. The analysis is

performed under plane strain conditions with an element thickness of 1 m in the z-direction

(normal to the plane of bending). A vertical load at x = 0 and the corresponding reactions
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Figure 4.15: Displacement and energy error norms for plane strain cantilever beam.

at x = L are applied in accordance with the stress field solutions given in (4.237)-(4.239).

The expected axial and vertical displacements, u and v, respectively, for a plane strain

cantilever beam considering shear deformation (after Timoshenko and Goodier, 1951) are

given by

u =
P (L2− x2)y

2ĒI
−

ν̄Py3

6ĒI
+

Py3

6IG
(4.246)

v =
ν̄Pxy2

2ĒI
+

P (x3− L3)

6ĒI
−

PL2(x− L)

2ĒI
−

Pc2(x− L)

2IG
(4.247)

in which L is the beam length, G is the shear modulus, and

Ē = E/(1− ν2); ν̄ = ν/(1− ν) (4.248)

where E = 2000 MPa is the elastic modulus and ν = 0.4999 is Poisson’s ratio.

Coarse mesh accuracy is evaluated using a tip deflection ratio, computed as the ratio of

the average recorded deflection at x = 0 to the v(0, 0) solution of (4.247) for a 1× 4 mesh

(one element over D, four elements over L). The tip deflection ratio for H1ssp is 0.983,

demonstrating a considerable increase in coarse mesh accuracy over the 0.005 ratio for an

H1 element with the same mesh and material properties.

The convergence rates of the H1ssp and H1 elements are evaluated in terms of the

displacement error norm and energy error norm defined in (4.242)-(4.244) for four levels of

consistent refinement (1 × 4, 2 × 8, 4 × 16, and 8 × 32). Convergence plots are shown for

each error norm in Figure 4.15. The accuracy and convergence rates for H1ssp far exceed

those of H1 for this nearly incompressible case, thus confirming the success of the anti-

locking scheme used in the stabilized single-point H1ssp element and H1-P1ssp solid phase

formulation.
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Figure 4.16: Model layout for flexible footing load test problem.

4.9.3 Flexible Footing Load Analysis

Stability in the incompressible-impermeable limit is evaluated using a test problem in which

a footing load is applied to a saturated continuum of soil with a low permeability and a

pore fluid with a large bulk modulus. The general layout of this test problem is shown in

Figure 4.16. Zero drainage boundaries are enforced on all faces except that with the applied

loading, displacements are fixed on the surfaces indicated, and symmetry conditions are

used as shown. The mesh has 12 elements in each direction and is selectively refined near

the loading with the elements gradually increasing in size away from this zone.

The loading is applied as linearly increasing from zero to 0.1 kPa over 0.1 s, then held

constant for the remainder of the analysis. Permeability is isotropic at 10−7 m/s, fluid

density is set at 1.0 Mg/m3, the fluid build modulus is 2.2 · 1012 kPa, the void ratio is 0.7,

and the mixture mass density is 2.67 Mg/m3. The soil is modeled as linear elastic with

elastic modulus Es = 25, 000 kPa and Poisson’s ratio ν = 0.3. Rayleigh damping with

C = 0.05M + 0.0003K is assumed for the solid phase.

Cases are considered both with and without the non-residual stabilization implemented

in the H1-P1ssp element to assess the effectiveness of the stabilization scheme. The results

are compared to full-integration H1-P1 (8 nodes, 32 degrees-of-freedom) and H2-P1 (20

nodes, 68 degrees-of-freedom) elements with similarly implemented u-p formulations to

provide an independent assessment of element performance. In the OpenSees interpreter,

these elements are referred to as brickUP and Twenty Eight Node BrickUP, respectively.

The variation of nodal pore pressure with depth directly below the center of the applied

load at t = 0.95 s is shown in Figure 4.17 for the H1-P1ssp and H2-P1 elements. Stabilization

for the H1-P1ssp element is active with α ranging from 2.97 · 10−6 to 1.44 · 10−5 depending

on the element size. As shown in Figure 4.17, the pressure distribution for the H1-P1ssp



www.manaraa.com

68

0 0.05 0.1

0

5

10

15

20

25

30

pore pressure (kPa)

de
pt

h 
(m

)

 

 

H2−P1
H1−P1ssp
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H1-P1ssp and H2-P1 elements.

element compares favorably with the higher-order , thus inherently stable, H2-P1 solution.

Spatial pore pressure distributions at t = 0.95 s are used compare the considered element

types. Figure 4.18(a) shows the pore pressure field for the H1-P1ssp element with stabiliza-

tion inactive (α = 0). The observed instability is expected for this case. The corresponding

result for the H1-P1ssp element with stabilization active (2.97 · 10−6 ≤ α ≤ 1.44 · 10−5

according to element size) is shown in Figure 4.18(b). The effect of stabilization on the

solution is dramatic.

The pore pressure fields for the H1-P1 and H2-P1 elements are shown in Figures 4.18(c)

and (d), respectively. The expected pressure instability for the H1-P1 element is observed,

though the effect is not as severe as for the H1-P1ssp element, likely due to the difference

in integration schemes. The H2-P1 element provides a stable basis of comparison for the

H1-P1ssp element, and as shown in Figure 4.18, the two cases produce reasonably similar

results, thus verifying the effectiveness of the non-residual stabilization scheme implemented

in the H1-P1ssp element

The advantages of the H1-P1ssp element for the analysis of saturated porous media are

evident from the results presented here. The H1-P1ssp and H1-P1 elements are identical

with respect to degrees-of-freedom, however, not only is the H1-P1ssp element more efficient

computationally due to the use of reduced integration, the stability of the pressure field is

superior. Compared to the H2-P1 element, the H1-P1ssp element greatly reduces the num-

ber of degrees-of-freedom for the problem, simplifies mesh generation, and offers increased

computational efficiency while preserving similar accuracy. The reduction in computational

effort for the H1-P1ssp element is further analyzed and quantified in the following example

analysis.



www.manaraa.com

69

0.11

0.11

0.00

0.05

0.10

0.00

0.05

0.10

(a) (b)

(c) (d)

p (kPa)

p (kPa)

p (kPa)

p (kPa)

0.15

0.15

-0.04

-0.04
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4.9.4 Site Response Analysis

The applicability of the H1-P1ssp element to a general dynamic, nonlinear problem is eval-

uated, and the relative computational efficiency of the new element is assessed, using a site

response analysis. Typically, a site response analysis considers only 1D wave propagation

(see Section 4.8.4 for a more traditional approach), in this case the 3D H1-P1ssp element

is used to model an infinite slope subject to an earthquake in the transverse (across slope)

direction. The intention of this model is to capture the down slope displacements which

occur due to pore pressure build up from the shaking in the across slope direction.

The model consists of a single column of elements supported vertically at the base.

Schematically, the x-y plane of the 3D site response model is identical to that used to test

the 2D element and shown in Figure 4.9. Periodic boundary conditions are enforced in

the two horizontal directions to restrict element deformation to a pure shear mode. In the
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Figure 4.19: Across slope (u) and down slope (w) displacements at ground surface with
pore pressure ratio (ru) in center of saturated loose sand layer for H1-P1ssp element.

direction of loading (x-direction), a viscous dashpot is used to represent the compliance

of an underlying bedrock layer, modeled as linear elastic, after Lysmer and Kuhlemeyer

(1969). Displacements are fixed at the base in the down slope direction (z-direction). The

nodes at and above the groundwater table are free to drain. Zero drainage is enforced on

all remaining boundaries.

The soil profile modeled in this test problem, also shown in Figure 4.9, consists of two

layers of cohesionless soil underlain by bedrock. The groundwater table is 2 m below the

surface and all material below the groundwater table is assumed to be saturated. The slope

is assigned a 2% grade and is incorporated into the model using appropriate body force

vectors. A pressure-dependent nested yield surface constitutive model capable of capturing

cyclic mobility (Elgamal et al., 2003; Prevost, 1985a) is used to approximate the behavior

of the cohesionless soil. The assumed material parameters are provided in Figure 4.9. The

reported permeability values are isotropic. Stabilization is active for the H1-P1ssp element

with α = 2.4 ·10−6. The Yerba Buena Island record from the 1989 Loma Prieta event (NGA

#813) from the PEER ground motion database is used as the input motion. This motion

is scaled to a PGA of 0.2 g and is applied at the base of the soil column in the across slope

direction as an equivalent force time history obtained from the product of ρrock and vs rock
with the velocity time history of the scaled motion after Joyner and Chen (1975).

Figure 4.19 presents a summary of the behavior of this 3D site response model, providing

the recorded displacements for the H1-P1ssp element at the top of the soil column in the x-

and z-directions, u and w respectively, as well as the pore pressure ratio in the center of the

saturated loose sand layer (6 m below the surface). The pore pressure ratio is computed

from (4.245). Initially, the applied shaking causes periodic displacements in the x-direction

only. As the shaking intensifies, pore pressure increases in the saturated loose sand layer,
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Figure 4.20: Progression of down slope (z-direction) displacement with contours of pore
pressure ratio ru for H1-P1ssp element. Displacements are magnified 25 times.

indicated in Figure 4.19 as an increase in pore pressure ratio. Once the pore pressure has

increased to the point where the effective strength of the soil is less than the static shear

stress induced by the slope, the soil begins to displace in the z-direction. After the strong

shaking in the applied motion has completed, the pore pressure in the loose sand layer

begins to dissipate, and no further down slope displacement occurs. This effect is also

shown in Figure 4.20, which provides the displaced shape of the soil column (exaggerated)

with contours of pore pressure ratio at several indicated times during the analysis.

To further evaluate the H1-P1ssp element, the constitutive behavior is examined at

several depths within the soil column (4, 8, and 12m). Figure 4.21 shows the constitutive

response in the x-y plane, with the shear stress-strain response (τxy-γxy) at left and the

stress path in shear-mean effective stress space (τxy-p
′) at right, with failure and phase

transformation surfaces indicated as solid and dashed lines, respectively. At all depths, the

mean effective stress initially decreases, then increases as the pore pressures dissipate. The

soil remains nearly elastic at the 4 m and 12 m locations, while exhibiting a nonlinear stress-

strain response at the 8 m location and a stress path that is indicative of cyclic mobility.

Figure 4.22 shows the corresponding constitutive responses for the z-y plane. As shown, the

shear stresses are significantly smaller than in the plane of applied shaking. The reduction

in mean effective stress at the 8 m depth is large enough to cause failure, leading to very

large shear strains, manifested as the large down slope displacement of the upper portion

of the soil column indicated in Figures 4.19 and 4.20.

To evaluate the relative efficiency of the H1-P1ssp element, the H1-P1 and H2-P1 ele-

ments introduced in the footing load example are also considered in the site response model.

Table 4.4 shows the user CPU time for each element type. All three cases were run with the

same solution algorithms and analysis time steps on the same computer. In order to provide
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Table 4.4: Execution times for site response analysis.

Element H1-P1ssp H1-P1 H2-P1

Execution time 2.60 min 7.06 min 43.03 min
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Figure 4.23: Acceleration, velocity, and displacement response spectra in loading direction
at ground surface.

a comparable number of degrees-of-freedom, the mesh for the H2-P1 element has only 60

elements over the height of the soil column. As expected, the H1-P1ssp element is the most

computationally efficient of the three. The higher-order H2-P1 element is significantly more

expensive computationally than either of the linear elements, taking approximately 6 times

longer than the H1-P1 element and about 16.5 times longer than the H1-P1ssp element. It

should be noted that due to the peculiarities of the 20 node H2-P1 element, there are a

greater number of degrees-of-freedom for the H2-P1 case, even with half the number of ele-

ments, however, it is likely that the large difference in computational effort is primarily due

to the larger number of integration points used by this element rather than the increased

size of the problem.

The efficiency of the H1-P1ssp element is apparent from the results of Table 4.4, however,

efficiency alone does not verify the effectiveness of the element formulation. Figure 4.23

shows the acceleration, velocity, and displacement response spectra in the loading direction

at the top of the soil column for each element type. All three cases produced reasonably

similar results, though there are large differences at lower periods. To better assess the

relative similarities and differences across the three cases, Figure 4.24 shows the ratios of

the spectral acceleration for the H1-P1 and H1-P1ssp elements to that for the H2-P1 element.

The discrepancies in the results at lower periods for both of the lower-order elements are

clearly shown here, with the H1-P1ssp element providing a better correlation in PGA.
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Figure 4.24: Spectral acceleration ratios for H1-P1ssp and H1-P1 elements.

4.10 Summary

Low-order single-point quadrature u-p elements for dynamic analysis of saturated porous

media in two- and three-dimensions have been developed and studied. The new elements,

Q1-P1ssp and H1-P1ssp, use hourglass stabilization of the solid phase to eliminate the

spurious modes associated with reduced integration. Assumed strain fields are used to

eliminate shear and volumetric locking from the solid phase. The fluid phase is stabilized in

the incompressible-impermeable limit using a non-residual stabilization scheme, facilitating

the use of equal-order interpolation for the displacement and pressure fields.

The solid phases of the elements were implemented as distinct elements, Q1ssp and

H1ssp. These displacement elements were evaluated using the standard patch test, and the

anti-locking strategies were verified in pure bending analyses with various configurations,

including nearly incompressible cases. The adopted hourglass-stabilization techniques were

shown to successfully stabilize the implemented single-point integration schemes, and the

anti-locking strategies were found to effectively remove both parasitic shear and volumetric

locking phenomena from the new elements.

The stability of the coupled fluid-solid elements in the limiting case of incompressibility

and impermeability was evaluated, and the effectiveness of the implemented stabilization

technique was demonstrated. Comparisons to higher order elements and full-integration

low-order elements highlighted the advantages of the new elements. The Q1ssp, Q1-P1ssp,

H1ssp, and H1-P1ssp elements are more stable, accurate, and efficient than the standard

low-order elements while producing comparable results to the higher-order elements with

greater computational efficiency.
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Chapter 5

REVIEW OF DESIGN PROCEDURES FOR BRIDGE FOUNDATIONS

SUBJECT TO LIQUEFACTION-INDUCED LATERAL SPREADING

In a typical bridge analysis or design procedure, the individual component systems

are analyzed individually to determine appropriate demands for various load cases. The

results of the component analyses are then synthesized into a global bridge analysis to

assess the suitability of the entire structure. A balance between engineering rigor and

economic efficiency is sought, and the treatment of foundation behavior in the component

and global analysis phases is generally simplified. The analytical approaches adopted in

practice typically assume the applicability of 1D or 2D descriptions, or incorporate 3D

effects in a simplified manner. Fully 3D analysis may be conducted for sites with high levels

of importance or certain types of topography, however, widespread use of 3D analysis in

practice is limited.

Two example design approaches for bridge foundations subject to liquefaction-induced

lateral spreading are discussed in the following sections: the California Department of Trans-

portation (Caltrans) procedure and the Washington State Department of Transportation

(WSDOT) procedure. Each design procedure is based off of the applicable American Associ-

ation of State Highway and Transportation Officials bridge design specifications (AASHTO,

2010a,b), and each approach considers many of the same analysis components, but the two

procedures lead to different results due to key differences in the assumptions made.

5.1 Summary of Caltrans Design Guidelines for Lateral Spreading

The current bridge foundation design guidelines for liquefaction-induced lateral spreading

used by the California Department of Transportation are contained in an internal policy

proposal (Caltrans, 2011). These guidelines are based off of the NCHRP (2002) design

recommendations which effectively separate the design problem into two distinct cases:

(1) an unrestrained ground displacement case, and (2) a restrained ground displacement

case. The unrestrained ground displacement case assumes that the foundation is subject

to a broad failure mass and will not provide significant resistance to lateral soil movement.

The restrained ground displacement case assumes the failure mass has a limited width and

that the foundation provides resistance to soil deformation during lateral spreading. The

design processes for the restrained and unrestrained ground displacement cases, per Caltrans

(2011), are described in the following discussion.
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Figure 5.1: Prototype examples for restrained and unrestrained ground displacement cases.

5.1.1 Restrained Ground Displacement Case

The restrained design case applies to foundations which are assumed to provide partial

restraint to soil flow during lateral spreading. The prototype for this case is an approach

embankment acting on a pile-supported abutment, see Figure 5.1. Due to the limited width

of the embankment, it is assumed that the lateral stiffness of the abutment foundation will

provide resistance to soil movement. The procedure recommended for this design case is

based on the pile pinning analysis concept (Martin et al., 2002) as refined and expanded upon

by later works (Zha, 2004; Boulanger et al., 2006; Ashford et al., 2011). In the pile pinning

approach, a beam on nonlinear Winkler foundation (BNWF) model of the foundation is

combined with a limit equilibrium slope stability analysis of the embankment to determine

the force-displacement state at which the resistance of the foundation is compatible with

the deformation of the lateral spreading mass. The method consists of 7 basic steps:

1. Assess Liquefaction Potential

The liquefaction potential of the site soils is characterized for a peak ground accelera-

tion (PGA) corresponding to a 5% in 50 years hazard. This is typically accomplished

using a simplified approach (e.g., Youd et al., 2001). Per AASHTO (2010b), the

assumption of reduced strength due to pore pressure build-up or full liquefaction is

required for soils with a factor of safety against liquefaction less than 1.2.

2. Estimate Residual Strength of Liquefied Soils

There are two options which can be used to account for the residual strength of the

p-y curves representing liquefied layers in the BNWF model of the soil-foundation

system. No explicit preference of method is stated in Caltrans (2011).
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(a) The p-multiplier (mp) approach (e.g., Brandenberg et al., 2007b) may be used to

obtain scaled p-y curves for liquefied soils based on a sand-type backbone curve.

(b) The residual strength of the liquefied soil may be estimated using an empirically-

based method (e.g., Wang, 2003), and used as the ultimate resistance in the

definition of p-y curves for liquefied soils based on a clay-type backbone curve.

3. Develop Foundation Model

The numerical BNWF model used to analyze the foundation requires definitions for the

equivalent beam representing the foundation, the p-y curves for soil-pile interaction,

and a force-displacement curve to capture abutment-embankment interaction. The

commercial software LPILE is typically used for this purpose.

(a) Definition of equivalent beam: The equivalent beam used to model the foun-

dation (piles and cap/abutment) may be defined assuming linear elastic or non-

linear elastoplastic behavior. In both cases, the spatial arrangement of the piles

is largely ignored and the equivalent beam is developed in a simplified manner.

For linear elastic behavior, the equivalent beam model is obtained by multiplying

the bending stiffness, EI, of a single pile by the number of piles in the group.

For nonlinear behavior, the moment-curvature response of a single pile is scaled

by the number of piles in the group.

The pile cap/abutment is incorporated into the equivalent beam using a large

linear elastic bending stiffness which approximates its rigidity relative to the piles.

The rotational stiffness of the pile group is modeled using a rotational restraint

located at the connection of the piles to the cap/abutment. This restraint is

assigned a stiffness equivalent to the estimated rotational stiffness of the pile

group after Mokwa and Duncan (2003).

(b) Definition of p-y curves for piles: The p-y curves used for soil-pile inter-

action are based on the work of Matlock (1970) for soft clay, Reese and Welch

(1975) for stiff clay, and Reese et al. (1974) for sand. The base p-y curves de-

termined for the site using these methods are modified to account for pile group

effects and the effects of liquefaction.

• Group effects are considered using a composite group efficiency factor com-

puted as the average of the reduction factors for each row in the pile group

as recommended by Mokwa and Duncan (2001).

• The p-y curves of liquefied soils are defined as discussed in step 2. The

influence of the weaker layer of liquefied soil on the surrounding material is

accounted for using a linearly smeared ultimate lateral resistance profile as

shown in Figure 5.2.



www.manaraa.com

78

strength

unliquefied crust

residual
liquefied soil

linear
smearing

unreduced pu
profile

ultimate lateral resistance, pu

SbB

SbB

Sb =







2, B < 1 ft
2 − (B − 1)/2, 1 ft ≤ B ≤ 3 ft
1, B > 3 ft

where B is the pile diameter (units of ft)

unliquefied soil

Figure 5.2: Smeared profile of ultimate lateral resistance to account for presence of liquefied
layer on strength of surrounding soil (after Caltrans, 2011).

(c) Definition of cap/abutment-soil interaction curve: A tri-linear force-

displacement curve describing the interaction of the cap/abutment with the

surrounding soil is defined using the maximum passive load of the soil on the

foundation, Fult, and the displacement, ∆max, required to mobilize this force.

This curve is shown in Figure 5.3. Two failure cases are considered to determine

Fult, with the lesser force controlling the design. The two cases are as follows:

• A log-spiral passive wedge acting on the cap/abutment combined with the

lateral resistance provided by the portions of the piles extending through the

crust (i.e., soil above the liquefied layer).

• A Rankine passive wedge acting on foundation elements above the liquefied

layer assuming that the cap/abutment, crust soil beneath the cap/abutment,

and piles within the crust all act as a composite block.

The displacement, ∆max, corresponding to the ultimate passive force is taken

as the sum of 5% of the cap/abutment height with an adjustment factor which

accounts for the effects of the depth of the liquefied material and the transverse

thickness of the cap/abutment after Brandenberg et al. (2007a).

4. Displacement Analysis of Foundation Model

Once the foundation model has been completed, a series of pushover analyses are

conducted in which increasing crustal displacements are considered. Displacements

are applied to the soil end of the p-y springs using the displacement profile shown in

Figure 5.4 to simulate the effects of lateral spreading. For a series of increasing surface

displacements, the pile cap displacement and a running average of the shear force at
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Figure 5.3: Tri-linear force-displacement curve for pile cap/abutment-soil interaction in
foundation model (after Caltrans, 2011).
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Figure 5.4: Transition from physical bridge foundation to foundation model showing the
applied displacement profile for lateral spreading pushover analysis.

the center of the liquefied layer are recorded to obtain a lateral spreading pushover

curve for the foundation.

The running average shear force for each displacement increment is computed as

the sum of the current and all previous shear force values divided by the number

of terms in the sum. This running average is made in an attempt to account for the

discrepancy between the pushover analysis of this design step, in which the shear force

increases with increasing ground displacement, and the slope deformation analyses of

the next step, in which only constant foundation resisting forces are considered.
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Figure 5.5: Schematic of slope stability analysis considering a deck resisting force, Fdeck,
and foundation resisting force, R.

5. Slope Stability and Deformation Analysis of Approach Embankment

A pseudo-static slope stability model is used to determine foundation resisting forces,

R, at the center of the liquefied layer for a series of horizontal accelerations, kh, applied

in the model as a constant inertial force

Fh = khW (5.1)

where W is the weight of the failure mass. For each considered acceleration value, the

resisting force for which the slope factor of safety reaches 1.0 is recorded.

In these analyses, the restraining forces are applied on the lower edge of the failure

surface, and the failure surface is constrained to the center of the liquefied layer, as

depicted in Figure 5.5. It is also recommended that the failure surface be limited to

extending ≤ 4 times the height of the embankment away from the bridge abutment.

If it is assumed that the bridge deck will provide longitudinal resistance to abutment

movement, a deck resisting force, Fdeck, is computed based on the full passive resistance

of the soil acting on the deck and applied during the slope stability analysis.

Newmark rigid sliding block analysis is used to compute the slope displacements corre-

sponding to the kh coefficients used to determine resisting forces in the slope stability

analyses. Typically, a simplified procedure (e.g., Bray and Travasarou, 2007) is used

in lieu of site-specific sliding block analysis.

6. Determine Force-Displacement Compatibility

The results of the pushover and slope stability/deformation analyses are used to de-

termine a compatible force-displacement state which considers the restraining effects
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Figure 5.6: Tributary width of embankment, wt (after Boulanger et al., 2006).
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Figure 5.7: Determination of compatible force-displacement state.

of the bridge foundation on the deformation of the soil-foundation system during lat-

eral spreading. This is accomplished by plotting the slope force-displacement curve

determined from the slope stability/deformation analyses (step 5) with the foundation

running average shear force-displacement curve determined in the pushover analyses

(step 4) in the manner shown in Figure 5.7.

The running average forces are used for the foundation force-displacement curve to

account for the differences in how the resisting force is handled in the two curves (con-

stant in the slope deformation curve, non-constant in the pushover curve). Because the

resisting forces obtained in the slope stability phase represent a force per unit thick-

ness of soil, the lateral spreading pushover curve must be scaled by an appropriate

width. For this purpose, the finite transverse thickness of an approach embankment

is considered in the scaling factor, as the pushover curve forces are divided by the

tributary width of the embankment determined as shown in Figure 5.6.



www.manaraa.com

82

7. Assess Foundation Performance

The final performance evaluation for the foundation is conducted using a lateral

spreading pushover analysis which considers the combined effects of kinematic and

inertial loads. A kinematic loading is applied using the displacement profile shown in

Figure 5.4 with an applied surface displacement set as the compatible displacement,

dc, determined in step 6. Consideration for inertial effects is made during this analysis

by applying 50% of the inertial loads from any associated superstructure or pile caps,

as it is unlikely that lateral spreading occurs during peak shaking.

The inertial effects of superstructure elements for typical bridge bents are considered

using an applied moment and shear force pair, which are determined based on the

design of the bridge columns. There are two possibilities:

(a) In most cases, the bridge columns are designed to yield and develop plastic hinges

prior to the onset of yield in the foundation elements. For this type of design, the

inertial moment is set at 1.2 times the plastic moment capacity of the column.

For columns which have a pinned connection at the top and a fixed connection

at the bottom (free-fixed configuration), the inertial shear force is determined by

dividing this inertial moment by the height of the bridge column. For columns

with a fixed-fixed configuration, the inertial shear force is set as the inertial

moment divided by one-half the column height.

(b) If the column is not expected to yield for the design event, then the inertial shear

force is estimated as the product of the tributary mass carried by the bridge

column with the spectral acceleration corresponding to the first mode of the

column. The inertial moment is set as the product of the inertial shear force

with the column height for a free-fixed configuration, or one-half of the same

product for a fixed-fixed configuration.

For seat-type abutment foundations, the superstructure is supported by bearings

which can freely rotate, and the only means of transferring inertial shear from the

superstructure is through a backwall, typically designed as a weak fuse with limited

capacity to transfer load. For these reasons, it is assumed that no inertial loads

are transferred from the superstructure for seat-type abutments. To account for the

inertial effects of relatively massive foundation bodies, such as a pile cap, an inertial

force is computed as

fcap = 0.65mcapano liq (5.2)

where ano liq is the design PGA without consideration for liquefaction, mcap is the pile

cap mass, and the 0.65 factor is used to represent a reduction in PGA due to the onset

of liquefaction.
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The combined kinematic-inertial pushover analysis is used to determine if the foun-

dation has sufficient capacity under an assumed peak demand case. This analysis

is used to evaluate the resulting shear force and bending moment demands for the

deep foundations and to assess whether the displacement at the pile cap/abutment is

acceptable for the overall bridge structure.

5.1.2 Unrestrained Ground Displacement Case

The unrestrained design case applies to foundations that are assumed to be unable to

significantly restrain the flow of soil associated with lateral spreading. An example case

is an interior bridge bent foundation embedded in a site with broad transverse continuity

as shown in Figure 5.1. In this case, the lateral stiffness of the foundation is insignificant

relative to the loads applied by the lateral soil flow. For design purposes, it is assumed that

soil movement will be unaffected by the presence of the foundation, though evidence from

previous earthquakes shows that this is not true at the local level.

The design process for the unrestrained ground displacement case begins in the same

manner as the restrained ground displacement case, with the assessment of liquefaction po-

tential (step 1), estimation of residual strength for liquefied soils (step 2), and the definition

of a foundation model (step 3) corresponding exactly. After the completion of these steps,

the remaining steps for the unrestrained case differ from those previously discussed.

Estimation of the design ground displacement for the unrestrained case is initiated by

evaluating the slope stability factor of safety (FS) assuming the absence of the foundation.

If FS ≤ 1.05, a flow-type failure is assumed. Typically, an assumption of 5 ft of displacement

is made, as this is considered sufficient to mobilize the full passive force of the crust on the

foundation, and it is stated in Caltrans (2011) that as long as the passive force is mobilized,

the remaining analysis is insensitive to the specific displacement value. For cases where FS

> 1.05, the crustal displacement is estimated using one of two simplified techniques. When

the slope has a predictable failure surface, a Newmark sliding block-based approach (e.g.,

Bray and Travasarou, 2007) is used with an input acceleration set equal to the design

PGA. For gentle slopes, where there is greater uncertainty in the failure surface, crustal

displacements are estimated using the strain potential procedure of Faris et al. (2006).

The foundation is evaluated using a lateral spreading pushover analysis, with an applied

displacement profile as shown in Figure 5.4. The imposed surface displacement in this

analysis is set equal to that required to mobilize the full passive soil resistance for the FS

≤ 1.05 case, or to the estimated crustal displacement for the FS > 1.05 case. Inertial loads

from the bridge superstructure (if any) are included in this analysis in the manner described

in step 7 for the restrained ground deformation case. The bending moment, shear force, and

displacement demands computed using the pushover analysis are compared to the allowable

foundation performance criteria.
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5.2 Washington State Department of Transportation Design Procedure

The Washington State Department of Transportation design guidelines for bridge foun-

dations subject to liquefaction-induced lateral ground deformation are contained in the

WSDOT geotechnical design manual, WSDOT (2011b), and WSDOT bridge design man-

ual, WSDOT (2011a). For most scenarios, several alternative analysis procedures are made

available, allowing the designer to choose the method most applicable to the particular site,

foundation, and structure.

Overall, the WSDOT design procedure for liquefaction-induced lateral ground deforma-

tion is similar to the unrestrained ground displacement case presented in Caltrans (2011).

The restrained ground displacement case addressed in the Caltrans guidelines, in which

a compatible force-displacement state is sought for situations in which there is a limited

transverse soil domain, is not explicitly included in the WSDOT procedure. Structural

pinning effects are addressed, however, they are not handled using the pile pinning analysis

procedure discussed in the previous section.

The WSDOT design procedure for liquefaction-induced lateral ground deformation is

summarized in the following discussion. There are two potential outcomes in this procedure:

(1) design for a flow-type failure, or (2) design for a lateral spreading type failure. The

particular outcome is determined in the fourth step of the procedure using limit equilibrium

slope stability analysis. The separate procedures for the two design outcomes are discussed

following a summary of the first four steps in the design process.

1. Assess Liquefaction Potential

Susceptibility to liquefaction is assessed for the PGA corresponding to the site-specific

hazard (typically 7% in 75 years). Liquefaction potential may be assessed using a

simplified approach (e.g., Youd et al., 2001; Cetin et al., 2004; Moss et al., 2006;

Boulanger et al., 2006; Idriss and Boulanger, 2008), or the performance-based approach

of Kramer and Mayfield (2007). For sites which are not well characterized by the

simplified methods, nonlinear effective stress site response analysis or laboratory cyclic

simple shear or cyclic triaxial shear testing may be used.

2. Estimate Residual Strength of Liquefied Soils

Residual undrained shear strength parameters for liquefied soils are obtained from

empirically-based relationships (e.g., Idriss and Boulanger, 2007; Olson and Stark,

2002; Wang, 2003). Residual strength conditions are assumed for all soils for which

FSliq < 1.2, or which are determined to be liquefiable for the return period of interest

using the method of Kramer and Mayfield (2007). If a more refined characterization

of residual strength is needed, cyclic triaxial shear or cyclic simple shear tests may
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be used instead of the empirical relationships. The p-multiplier (mp) approach (e.g.,

Brandenberg et al., 2007b) may also be used to obtained scaled p-y curves if a BNWF

approach is used in the foundation analysis.

3. Develop Foundation Model

A numerical model of the soil-foundation system is the primary means of analysis for

the effects of liquefaction-induced lateral ground deformation. There are two software

options available for use, DFSAP, based on strain wedge theory, and LPILE, based

on BNWF analysis using p-y curves.

(a) DFSAP Analysis Option: The DFSAP program uses strain wedge theory (e.g.,

Ashour et al., 1998, 2002) for lateral and axial analysis of single and grouped piles

or drilled shafts. This software is particularly attractive for drilled shaft founda-

tions for which the length is small relative to the diameter, as such foundations

are outside of the scope of most p-y curve-based analysis methods.

The built-in liquefaction option in DFSAP is not used to account for liquefied

soils in the analysis. Instead, the soil properties for liquefied soils are modified

using a reduced friction angle

φreduced = arctan

(

Sr

σ′

vo

)

(5.3)

where Sr is the estimated residual strength for the liquefied soil and σ′

vo is the

effective overburden stress at the depth of the liquefied soil layer. The initial

stiffness is reduced in a similar, unspecified, manner, and the soil unit weight is

not adjusted for liquefied conditions.

Group efficiency effects are handled internally by the DFSAP program. The

passive resistance of footings and pile caps below ground can also be accounted

for internally by the DFSAP program, though this resistance should be neglected

for areas prone to lateral spreading.

(b) LPILE Analysis Option: The LPILE program analyzes the laterally loaded

deep foundation using a BNWF approach in which the soil is represented using

p-y curves developed for various soil types (Matlock, 1970; Reese et al., 1974;

Reese and Welch, 1975). This software is most applicable to relatively long and

slender foundations.

When using LPILE, pile group efficiency effects are accounted for using p-

multipliers as recommended in AASHTO (2010b). The effects of liquefaction

on the p-y curves representing liquefied soil are considered using one of two ap-

proaches: (1) curves are scaled using the p-multiplier (mp) approach (e.g., Bran-
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denberg et al., 2007b), or (2) curves are computed using reduced soil properties

based on the residual strength of the liquefied soil as is done when using DFSAP.

4. Determine Potential for Lateral Soil Movement

The potential for liquefaction-induced lateral soil movement is initially assessed using

limit equilibrium slope stability analysis. The analysis is decoupled from all seismic

inertial forces, the resistance from any foundation elements in the slope is ignored,

and liquefied soils are assigned residual strength values. If the limit equilibrium FS

≤ 1.0, it is assumed that a flow-type failure will occur. If FS > 1.0, it is assumed

that flow failure is unlikely, and the effects of lateral spreading on the foundation are

assessed instead.

5.2.1 Analysis for Flow-Type Failure: FS ≤ 1.0

The deformations associated with liquefaction-induced flow failure are typically too large

to be acceptable for bridge foundation design if it is assumed that all of the deformation is

transferred to the foundation. Due to the involved design assumptions, stabilization of the

slope via structural pinning or ground improvement is typically required for the flow-type

failure case. In some situations, the lateral capacities of the foundation and soil are such that

the liquefied soil and any overlying crust will flow around the foundation, imparting only

minimal deformations to the structure. The potential for this flow-around type of behavior

is assessed by evaluating the full passive pressure of the soil acting on the foundation.

The lateral force which must be resisted by a foundation providing structural pinning

for slope stabilization is estimated by computing the stabilizing force necessary to achieve

a target slope stability FS of approximately 1.1. Seismic inertial forces are neglected unless

the primary design earthquake is a long duration subduction zone event, in which case an

inertial force is considered as

finertia = 0.25agm (5.4)

where ag is the peak ground acceleration and m is the unstable soil mass.

The force required to bring FS ≥ 1.1 may exceed the force which the soil can apply to

the foundation. To prevent this situation, it is recommended to check the stabilizing force

against a limiting force determined from the full passive pressure of the unstable soil acting

on the foundation using one of two approximations:

1. The passive pressure may be multiplied by the gross surface area of the foundation

(i.e., width × height) over which it acts.

2. The normal component of the passive pressure acting on incremental segments along

the foundation circumference may be multiplied by the individual lengths of the seg-
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Figure 5.8: Load distributions for shallow liquefied layer in flow-type failure case. (a)
Uniform for stabilizing force. (b) Linearly-increasing for passive force.

ments and the interface friction angle. If done in this way, it is recommended that

the limiting force be multiplied by a factor of 1.1 to be approximately consistent with

how the slope failure force is calculated.

The design load case is determined through a comparison of the estimated stabilizing

(from limit equilibrium analysis) and limiting (from passive pressure) forces. The way

in which these forces are applied and the manner in which their effects are compared is

dependent on certain aspects of the soil profile. If it is determined that the design load case

for flow-type failure is not structurally or economically feasible, then stabilizing ground

improvement techniques must be explored.

1. For relatively shallow liquefiable layers, the stabilizing force should be applied as a

uniform distributed load acting from the bottom of the liquefiable layer to the top

of the foundation, as shown in Figure 5.8(a). The passive force should be applied as

a linearly-increasing distributed load (passive wedge) acting from the bottom of the

liquefiable layer to the top of the foundation, as shown in Figure 5.8(b). The load

case which produces the smallest stress in the foundation controls the design.

2. For conditions where the flow failure surface does not extend to the bottom of a

deep and/or thick liquefiable layer, multiple failure surfaces for which FS ≤ 1.0 are

considered. The corresponding stabilizing forces are applied as uniformly distributed

loads extending from each failure surface to the top of the foundation. These are

compared to the limiting passive force, applied as a wedge distribution from the failure

surface to the top of the foundation. An example of each distribution is shown in

Figure 5.9 for a single failure surface. For the smaller of the two forces determined

at each failure surface, the moment and shear at the estimated point of fixity of the

foundation are computed. The lateral load distributions which result in the largest

bending moment and shear force demands are used as design load cases.
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Figure 5.9: Load distributions for flow-type failure case where failure surface does not extend
to the bottom of the liquefied layer. (a) Uniform for stabilizing force. (b) Linearly-increasing
for passive force.

5.2.2 Lateral Spreading Analysis: FS > 1.0

The effects of lateral spreading on embedded foundations are assessed using a pushover

analysis in which an estimated free-field displacement profile is applied to the free end of

the soil-foundation interaction curves used in the soil-foundation model.

A lateral spreading deformation analysis is used to estimate potential ground deforma-

tion. This is accomplished using an empirically-derived relationship (e.g., Youd et al., 2002;

Kramer, 2008), a Newmark sliding block analysis (e.g., Bray and Travasarou, 2007), or dy-

namic nonlinear effective stress numerical analysis. The estimated lateral deformation is

treated as the free-field displacement of the ground surface in subsequent analyses.

The displacement profile used in the pushover analysis represents the free-field distribu-

tion of lateral spreading deformation with depth, and is dependent on the estimated free-field

surface deformation. Three methods are available for defining a displacement profile:

1. An empirically-based shear strain profile approach (e.g., Zhang et al., 2004; Idriss and

Boulanger, 2008).

2. A set of dynamic nonlinear effective stress analyses using several input motions.

3. Assuming a simplified profile which has a constant displacement in a unliquefied crust

and a linearly varying displacement across the liquefied layer as shown in Figure 5.4.

The ultimate lateral resistance and stiffness of the soil-foundation interaction curves

representing liquefied soil are reduced to account for residual strength using the methods
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discussed in step 2. The resistance and stiffness of the unliquefied soil are based on the site

soil properties as determined from field exploration and laboratory testing. Group effects

are neglected for curves in fully liquefied soil after Rollins et al. (2005). The passive pressure

and side friction generated on the pile cap must also be considered in the analysis.

As with the flow failure case, lateral forces are checked against a limiting case corre-

sponding to the passive force of the unstable soil acting on the foundation. If the force

applied to the foundation in the pushover analysis exceeds the passive capacity of the soil,

it is assumed that the crustal soil will fail during lateral spreading, flowing around or piling-

up behind the foundation, and the passive force is used for design. This force is applied as a

passive wedge which extends from the ground surface to the lesser of the following depths:

1. The bottom of the liquefied layer.

2. The depth of the failure surface at its intersection with the foundation.

3. The assumed limiting depth for lateral spreading of 50 ft.

For the design load case, the induced loads are checked against the available resistance

of the foundation and general bridge system, and the estimated displacements are checked

against tolerable values. Mitigation of foundation subsoils may be required if the predicted

forces or deformations are large enough to be structurally or economically infeasible.

5.3 Summary

The California Department of Transportation and Washington State Department of Trans-

portation design procedures for bridge foundations subject to liquefaction-induced lateral

spreading were presented. Each approach primarily involves the use of simplified analysis

methods to determine the design demands for pile and drilled shaft foundations, however,

there are differences in how these simplified methods are applied and in how the three-

dimensional geometry of the site is incorporated into each procedure.

The Caltrans approach makes an initial distinction between restrained and unrestrained

ground displacement based on a qualitative assessment of the geometry of the soil sur-

rounding the foundations. For the restrained ground displacement case, it is assumed that

the existence of the foundation will limit the demands that the soil can impose on the

bridge structure during lateral spreading. Three-dimensional effects are considered and

a compatible force-displacement state is determined and used for the design of the bridge

foundations. The unrestrained ground displacement case assumes that the soil displacement

will be largely unaffected by the presence of the foundations and the structure is typically

designed to withstand the full passive force of the crust.
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The WSDOT procedure is similar to the unrestrained ground displacement case from

the Caltrans procedure in that the bridge structure is be designed to withstand the soil

displacement, and corresponding lateral forces, that would occur in the absence of the

embedded foundations. No direct consideration for 3D effects is made in this procedure,

leading to potentially overconservative design solutions for cases which would be considered

restrained ground displacement under the Caltrans approach.
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Chapter 6

IDENTIFICATION AND SELECTION OF REPRESENTATIVE CASE

STUDIES FROM CHILE

The geologic and seismic similarity between Chile and western Washington provides a

unique opportunity to learn from the performance of bridges subject to liquefaction-induced

lateral spreading. Reconnaissance efforts following the Mw8.8 February 27, 2010 offshore

Maule earthquake identified multiple bridge sites subject to liquefaction and lateral spread-

ing. These bridges are listed in Table 6.1, with a brief summary of reported performance.

At most of the considered sites, there was a tendency for the crustal soil and approach fill to

flow around embedded foundations, inducing only minor damage or lateral movement in the

abutments and piers. These effects are manifested as settlement and longitudinal cracking

in the approaches and a difference in the flow pattern of near-field and far-field soils.

To aid in an assessment of how the three-dimensional deformation of approach embank-

ments and crustal soil may affect the lateral loads imposed on bridge foundations during

lateral spreading, and how the imposed demands may differ from those estimated using

current simplified design procedures, several Chilean bridge sites are evaluated for use as

case studies. A survey of the information for the bridge sites identified in Table 6.1 in-

dicates that the available structural data consists primarily of construction drawings, and

the available geotechnical data consists primarily of standard penetration test (SPT) resis-

tance data. This available data is summarized in Table 6.2. In several cases, the GEER

(2010a) reconnaissance team performed site-specific investigations, including light detection

and ranging (LIDAR) scans, dynamic cone penetration tests (DCPT), and spectral analysis

of surface wave (SASW) evaluations.

6.1 Evaluation of Case Study Sites

Potential case study sites are evaluated with consideration for: (1) the sufficiency of the

available data for characterizing the site soil profile and bridge foundations, (2) the presence

of 3D deformation effects in the crustal soil and/or approach fill, and (3) the similarity

of the bridge site to conditions typical in Washington state. The relative merits of each

bridge listed in Tables 6.1 and 6.2 are evaluated using these criteria and summarized in the

following discussion. The primary case study site for the investigation of the effects of 3D soil

deformation on the lateral loads imposed on bridge foundations during liquefaction-induced

lateral spreading is selected and several candidates for future study are identified.



www.manaraa.com

92

Table 6.1: Summary of Chilean bridge sites affected by liquefaction-induced lateral spread-
ing with target behavior at approaches (FHWA, 2011; GEER, 2010a).

Site Name Reported Performance

Puente Mataquito ≤ 0.02 m lateral movement with minor crushing at NE abutment,
(built 2006) 0.7–1.0 m settlement of approach fill at NE abutment,

movement of approach fill perpendicular to bridge axis at NE abutment,
no movement at SW abutment

Puente Llacolén no lateral movement or significant damage at SW abutment,
(built 2000) 0.25–0.3 m lateral movement of support pier at NE approach,

approach span became unseated

Puente Juan Pablo II significant displacement/rotation and shear failure of NE approach bent,
(built 1973) vertical settlement of piers along length of bridge,

minor damage to SW approach

Puente Raqui I no lateral movement or significant damage at SE abutment,
(built 1992) movement of approach fill perpendicular to bridge axis at SE abutment,

twisting and 0.075–0.1 m lateral movement at NW abutment,
1 m settlement of approach fill at each abutment

Puente Raqui II no lateral movement with minor damage at abutments,
(built 1992) approach fill settlement ≤ 1.5 m,

movement of approach fills perpendicular to bridge axis,
interior piers tilted laterally with span collapse

Puente Tubul 0.15 m lateral movement at N abutment with interior pier collapse,
(built 1992) ≥ 0.1 m lateral movement at S abutment with interior span collapse,

1.0–1.5 m settlement of approach fill at each abutment

Puente La Mochita no lateral movement or significant damage at either abutment,
(built 2004) 0.3–0.8 m settlement of approach fill at each abutment,

movement of approach fills perpendicular to bridge axis

6.1.1 Puente Mataquito

Among the considered Chilean bridge sites, the Mataquito River Bridge (Puente Mataquito)

is the most attractive site for use as a case study of three-dimensional lateral spreading ef-

fects. Clear evidence of liquefaction-induced lateral spreading was observed at this site,

including the type of three-dimensional approach embankment deformation which is of in-

terest in this research, Figures 6.1 and 6.2, and the available structural and geotechnical data

is sufficient to create numerical models that are representative of site conditions. Puente

Mataquito is a recently constructed bridge founded on grouped drilled shafts, a commonly-

used foundation type in Washington state bridges, and the abutments reported performed

well during the lateral spreading event.

6.1.2 Puente Llacolén

The northeast approach to Puente Llacolén was significantly affected by lateral spread-

ing, however, the layout of this approach is not representative of the typical conditions

where three-dimensional ground deformation effects have been observed during liquefaction-

induced ground failure. As shown in Figure 6.3, the portion of the bridge affected by the
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Table 6.2: Summary of available structural, geotechnical, and miscellaneous data for con-
sidered Chilean bridge sites.

Site Name Available Data

Puente Mataquito original construction drawings,
boring logs from original construction,
geotechnical, hydraulic, and structural reports,
SASW data

Puente Llacolén original construction drawings,
post-earthquake repair construction drawings,
boring logs from post-earthquake repairs,
LIDAR, DCPT, and SASW data near NE approach

Puente Juan Pablo II post-earthquake repair construction drawings,
boring logs from post-earthquake repairs,
post-earthquake surveying data,
LIDAR, DCPT, and SASW data near NE approach

Puente Raqui I original construction drawings,
no geotechnical data

Puente Raqui II original construction drawings,
post-earthquake repair construction drawings,
boring logs from post-earthquake repair work

Puente Tubul original construction drawings,
geotechnical report from post-earthquake repairs,

Puente La Mochita original construction drawings,
boring logs from original construction,
post-earthquake repair construction drawings,
LIDAR scans

Figure 6.1: Lateral spreading on northern river bank at Puente Mataquito as seen from
ground surface (GEER, 2010a).
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Figure 6.2: Longitudinal crack in northern approach to Puente Mataquito (GEER, 2010a).

lateral ground deformation involves a series of elevated approach spans supported by piers.

The abutment and any associated approach fill are located well away from the river and

the zone of ground failure. The available geotechnical data for the northeast approach site

is limited, but is likely sufficient to characterize the soil conditions in a simplified manner.

This site may be useful as a representative case where three-dimensional effects are not ap-

plicable. The southwest approach to Puente Llacolén is more representative of the idealized

conditions for this study, with a small approach fill and an abutment which performed well

during lateral spreading of the surrounding ground, however, there is no available geotech-

nical information for this side of the bridge and only limited observational data.

6.1.3 Puente Juan Pablo II

As with Puente Llacolén, the layout of Puente Juan Pablo II is such that three-dimensional

ground deformation effects do not appear to have been an important factor during the

liquefaction-induced lateral spreading which occurred near the northeast approach. In this

area, the bridge approach consists primarily of elevated approach spans supported by piers.

There is sufficient information for a geotechnical and structural characterization of the site,

so Puente Juan Pablo II may be informative as a case study representing conditions where

three-dimensional effects do not apply.

6.1.4 Puente Raqui I

Observations at Puente Raqui I suggest that liquefaction-induced lateral spreading occurred,

triggering the target 3D deformation pattern in the approach fill at both ends of the bridge,

however, there is no available geotechnical data with which to characterize the soil profile
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Figure 6.3: Portion of northeast approach to Puente Llacolén affected by liquefaction-
induced ground deformation (FHWA, 2011).

at this site. In addition, the available structural information is limited, and suggests that

grouped timber piles were used as foundations for the abutments and piers. This combi-

nation of limited structural information and non-existent geotechnical data indicates that

Puente Raqui I is not a strong candidate for further study.

6.1.5 Puente Raqui II

During lateral spreading at both ends of Puente Raqui II, the approach fill settled and

deformed perpendicularly to the bridge axis, inducing little or no lateral movement in the

abutments, though the lateral movement of some interior piers caused the collapse of the

bridge spans. Due to post-earthquake reconstruction efforts, there is ample geotechnical

data available for the bridge site, however, structural information for the original bridge is

limited. As with Raqui I, it appears that the abutments and piers for Puente Raqui II were

supported on grouped timber piles of unknown number and configuration. Since timber

piles are not often used in new bridges, Puente Raqui II is not a preferred case, however,

this bridge may be useful as a case study site if no other sites prove to be more promising.

6.1.6 Puente Tubul

The performance of Puente Tubul during the earthquake and subsequent liquefaction-

induced phenomena was somewhat worse than that observed for Puente Raqui II, though

the overall behavior was similar between the two sites. There is a wealth of available geotech-

nical data for Puente Tubul, but there is only limited available structural data, though it is

likely sufficient for a simplified characterization of the site. As with Puente Raqui II, it ap-

pears that the original bridge at this site was supported on grouped timber piles, therefore,

this bridge is not a strong candidate for future study.
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Figure 6.4: Aerial view of Puente La Mochita and surrounding site.

6.1.7 Puente La Mochita

The Puente La Mochita site meets the specified criteria for selection as a case study, but

there are some problematic aspects to this site which reduce its viability for this purpose.

As shown in Figure 6.4, the bridge runs parallel to Rio B́ıo-B́ıo, spanning a small inlet

on the eastern bank. This geometry, combined with the deformation observations made

by the FHWA (2011) and GEER (2010a) reconnaissance teams, suggest that the ground

deformation mechanism at this site is outside of the scope of the research. Due to this

uncertainty in the driving mechanism, Puente La Mochita is not strong selection for use as

a case study.

6.2 Overview of Selected Case Study Site: Puente Mataquito

Based on the evaluation of the case studies discussed above, Puente Mataquito is chosen as

a first candidate for further analysis. Puente Mataquito is a 320 m long two-lane highway

bridge over the Mataquito river on the coastal route between Iloca and Quivolgo in the

Maule region of Chile. Figure 6.5 provides a view of the bridge from the southern river

bank near the approach embankment. Puente Mataquito is located near the city of Consti-

tución, as shown in Figure 6.6, about 100 km NNW of the 2010 Maule earthquake epicenter

at the approximate coordinates: 35.052◦W, 72.163◦S. The bridge is supported by precast

prestressed concrete I-girders over eight 40 m long interior spans. There are two seat-type

reinforced concrete abutments with wingwalls, founded on 4 × 2 groups of 1.5 m diameter

reinforced concrete drilled shafts. The seven interior piers consist of 3 × 1 groups of the

same 1.5 m diameter shafts, capped at the connection to the bridge girders in the manner

visible in Figures 6.5 and 6.7.
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Figure 6.5: Puente Mataquito looking northeast from the southwest approach. Photo re-
trieved January 14 2013, www.panoramio.com/photo/8172577.

Puente Mataquito

Santiago

Concepción

Epicenter

Constitución

50 km

Figure 6.6: Location of Puente Mataquito relative to Maule earthquake epicenter and several
Chilean cities. Map retrieved January 15 2013, maps.google.com.

Extensive liquefaction and lateral spreading occurred on both river banks at the Puente

Mataquito site due to the Maule earthquake. On the northern bank, the observed surface

manifestation of lateral spreading extended approximately 270 m from the river’s edge,

involving a large portion of the surrounding fields. The estimated lateral spreading defor-

mation on the ground surface was about 1.8 m over the approximately 65 m distance from

the NE abutment wall to the river’s edge (see Figure 6.1). The NE approach embankment

settled about 0.7–1.0 m relative to the bridge deck and expanded about 0.6 m away from the

road centerline. Reconnaissance teams noted the presence of lateral spreading at the south-

west approach, however, there is little available discussion beyond a brief statement that
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(a) (b)

Figure 6.7: Surface manifestation of lateral spreading at Puente Mataquito. (a) Southwest
approach (GEER, 2010a). (b) Northeast approach (MAE, 2010).

the scope of the spreading appeared to be constrained due to topographic effects (FHWA,

2011; GEER, 2010a; MAE, 2010). Figure 6.7 provides close-up images of the surface man-

ifestation of the lateral spreading at each approach. No ground motion information was

recorded for this site, however, the quantity and quality of the available information offsets

this omission from the data set. Due to this lack of information on the specific ground

motion experienced at the site, an alternative ground motion record is used during dynamic

simulations (see Section 8.1.5 for more information).

Though liquefiable soils were identified in the geotechnical report (Petrus, 2006), there is

no evidence that lateral spreading was explicitly considered during the design process. The

design scour conditions at the site are particularly extreme, and it appears that scour was

the controlling lateral load case for the foundations. Regardless of the particular load case

that drove the design, and despite the evidence of liquefaction and lateral spreading near

each approach, the overall performance of the bridge was favorable. Bridge operation was

not affected beyond the easily repairable settlement and roadway cracking in the northeast

approach embankment (FHWA, 2011; GEER, 2010a).

Only minor structural damage was reported, with some typical instances shown in Fig-

ure 6.8, however, based on photographs of the bridge, it seems that the movement of the

abutment was underreported. Per Figure 6.9, which is taken from the construction draw-

ings for Puente Mataquito, a 20 cm expansion gap is included at the connection of the

bridge deck with the abutments. This gap is visible in Figure 6.5, which was taken prior

to the Maule earthquake. As shown in Figure 6.8(a), the expansion gap has closed, placing

the abutment and deck in direct contact. This observation suggests that the abutment

potentially moved ≥ 20 cm towards the river, rather than the reported value of ≤ 2 cm.
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(a) (b)

Figure 6.8: Minor structural damage caused by lateral spreading (GEER, 2010a). (a)
Crushing of NE abutment. (b) Shearing of bridge girder above interior piers.

Figure 6.9: Construction detail for abutment to deck connection (courtesy Ministerio de
Obras Públicas, Chile).
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6.3 Summary

To gain a better understanding of the ways in which three-dimensional soil deformation

affects the lateral loads imposed on piled bridge foundations during lateral spreading, a case

study bridge site was selected for further analysis. The recent Mw8.8 Maule earthquake off

the coast of Chile caused multiple observed cases of lateral spreading at bridge approaches,

many of which displayed the target 3D behavior. After a review of the site observations

and data available for a series of bridge sites, Puente Mataquito was selected as the primary

case study for this research. The bridge sites that are most promising for future studies of

this nature are also identified.
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Chapter 7

GENERAL MODEL DEVELOPMENT: PUENTE MATAQUITO

Site observations following the Mw8.8 February 27, 2010 offshore Maule earthquake iden-

tified widespread lateral spreading at the site of Puente Mataquito, however, the structural

damage to the bridge was insignificant in comparison. Numerical models are developed to

identify the mechanisms for the reduction in lateral foundation loads implied by the minimal

structural damage at this site. These models include beam on nonlinear Winkler foundation

(BNWF) models used to test and compare simplified analysis procedures, dynamic effective

stress models of the bridge-foundation-soil system in plane strain used to analyze the liq-

uefaction susceptibility and response of the bridge system, and 3D models of the southern

bridge abutment, approach embankment, and surrounding soil used to analyze the local ef-

fects of lateral spreading on the abutment and foundations and to identify three-dimensional

mechanisms that may lead to reductions in estimated lateral loads. Since these models all

represent the same structure and site, there are certain shared aspects that appear in all of

the models. The development of these general model features is discussed in the following

sections. Specific development details for the different modeling approaches are discussed

in subsequent chapters dedicated to each aspect of the modeling effort.

7.1 Development of Idealized Soil Profile

The soil profile used for numerical models of the Puente Mataquito site is based on the

subsurface explorations (sondajes) made at the site and the soil characterization profile

reported by (Petrus, 2006). Initially, only three subsurface explorations were made (Son-

dajes 1-3), with one near each abutment and one near the center of the bridge. At a later

date, three deeper explorations (Sondajes 1a-3a) were made adjacent to each of the origi-

nals. Figure 7.1 shows the locations of the six subsurface explorations relative to the bridge

abutments and piers. The corresponding SPT resistance profiles are shown in Figure 7.2.

Boring logs for the subsurface explorations reveal a predominantly cohesionless soil pro-

file. Small clay lenses or veins are present, the lower blow counts at depth for Sondajes

2a being one example. For the purposes of the numerical work, minor variations in the

soil profile are ignored and all materials are assumed to be cohesionless. The groundwater

table is assumed to be at a constant elevation of −0.251 m based on average findings during

the site characterization, and all of the soil below the groundwater table is assumed to be

saturated.
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Figure 7.1: Locations of subsurface explorations relative to Puente Mataquito foundations
(after Ministerio de Obras Públicas, Chile).
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Figure 7.2: SPT resistance profiles for subsurface explorations at Puente Mataquito af-
ter Petrus (2006).

The geotechnical report for the project (Petrus, 2006) roughly divides the site into three

layers, an upper loose sand layer, a middle layer of denser sand, and an underlying dense

gravel layer. The spatial layout of the assumed soil profile is shown in Figure 7.3 with

relevant model properties summarized in Table 7.1. For each layer, a weighted average SPT

resistance value is computed from the data presented in Figure 7.2. Representative friction

angles, φ, for each layer are estimated from these average SPT values using a combination

of the correlations proposed by Meyerhof (1956) and Peck et al. (1974). Small strain shear

and bulk moduli, Gmax and Kmax, are estimated by correlating the assumed friction angle

values to relative densities using the relation proposed in FHWA (1978). Void ratios, e, and

phase transformation angles, φpt, are assumed based on the estimated relative densities.
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The properties of the embankment fill are unspecified in the available documentation.

The fill is assigned the properties of the gravel layer with a slightly larger mass density

to reflect a compacted state. Specific information on the geometry of the approach em-

bankments is similarly unavailable, therefore, a 3H:2V side slope is assumed based on the

Chilean Ministry of Public Works (MOP, 2002) recommendations for typical bridge ap-

proach embankments. The northeast and southwest approach embankments are assumed

to have identical geometries.

7.1.1 Assessment of Liquefaction Potential

The liquefaction susceptibility of the soil at the Puente Mataquito site is assessed using

the sand liquefaction triggering relationship of Youd et al. (2001). Assuming a peak ground

acceleration (PGA) of 0.4 g based on the recorded PGA in downtown Concepción (Boroschek

et al., 2010), a fines content in the range of 5% to 15%, an average reduction coefficient

of 0.9, a magnitude scaling factor of 0.75, and a total-to-effective vertical stress ratio of 2,

Ledezma (2012) estimated that sands with a normalized SPT value below 28 blows/ft are

likely to liquefy in an event similar to the Maule earthquake.

For the SPT blowcount and idealized soil profiles shown in Figures 7.2 and 7.3, this blow

count limit indicates that the loose sand layer is highly susceptible to liquefaction and the

boundaries of this layer represent the likely scope of liquefaction at the site. The underlying

dense sand and gravel layers are much less likely to liquefy for the considered event. Unless

otherwise noted, it is assumed in all analyses that liquefaction is confined to the saturated

portion of the loose sand layer.

7.1.2 Constitutive Modeling of Site Soils

The constitutive models of Elgamal et al. (2003) are used to simulate the response of each

soil material in the 2D and 3D continuum models. These constitutive models use a nested

yield surface approach and are available in pressure independent (J2 type) and pressure de-

pendent (Drucker-Prager type) yield surfaces in OpenSees. The pressure dependent version

of this constitutive model is capable of capturing contraction, dilation, and cyclic mobility

for cohesionless soils. Figures 7.4, 7.5, and 7.6 demonstrate the constitutive response of the

material models used for each soil layer, showing the relationships between the norm of the

deviatoric stress, ‖s‖, mean stress, p = trσ, volumetric strain, tr ε, norm of the deviatoric

strain, ‖e‖, and excess pore pressure, ue. These figures are developed using single element

models of a conventional triaxial compression (CTC) test and a direct simple shear (DSS)

test. The CTC test simulates drained conditions and is performed in a monotonic config-

uration only. The DSS test is simulated under undrained conditions and is performed in

monotonic and cyclic configurations.
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Figure 7.4: Constitutive response of model soils in simulated monotonic drained CTC test.

0

200

400

600

||s
|| 

(k
P

a)

0 0.5 1
0

100

200

||e|| (%)

u e (
kP

a)

−400 −200 0
p (kPa)

0

20

40

60

||s
|| 

(k
P

a)

0 2

−6

−4

−2

0

||e|| (%)

u e (
kP

a)

−50 0
p (kPa)

0

100

200

||s
|| 

(k
P

a)

0 0.5
−10

0

10

20

30

||e|| (%)

u e (
kP

a)

−150 −100 −50 0
p (kPa)

0

100

200

||s
|| 

(k
P

a)

0 0.5
0

50

100

||e|| (%)

u e (
kP

a)

−150 −100 −50 0
p (kPa)

Loose sand Dense sand

Gravel Fill

Figure 7.5: Constitutive response of model soils in simulated monotonic undrained DSS
test.
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Figure 7.6: Constitutive response of model soils in simulated cyclic undrained DSS test.

Table 7.2: Contraction and dilation input parameters used in constitutive model for each
soil type.

Soil Type c1 c2 c3 d1 d2 d3

loose sand 0.087 5.0 0.18 0.0 0.0 3.0

dense sand 0.067 5.0 0.23 0.06 0.27 3.0

gravel 0.013 5.0 0.0 0.3 0.0 3.0

fill 0.013 5.0 0.0 0.3 0.0 3.0

The amount of contraction and dilation demonstrated in Figures 7.4, 7.5, and 7.6 are

controlled by a series of input parameters that are related to the relative density of the

model soils. The input parameters used for each soil type are summarized in Table 7.2. As

would be expected, looser materials have larger contraction parameters and smaller dilation

parameters, and these values get smaller and larger, respectively, with increasing relative

density. The input parameters for the model soils beyond those referenced in Tables 7.1

and 7.2 are left as the default initialization values in all analyses.
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Figure 7.7: Dimensions and details of the model drilled shaft cross-section.

divisions
Angular

divisions
Radial

Figure 7.8: Typical discretization scheme for circular fiber section model.

7.2 Foundation Modeling Approach

The abutments and pier foundations for Puente Mataquito are 1.5 m diameter reinforced

concrete shafts. For modeling purposes, an idealized template cross-section, Figure 7.7, is

assumed based on the typical reinforcement configuration used in the shaft foundations.

There are 31 longitudinal bars, all 36 mm in diameter, and the central core of the shaft is

confined with 18 mm diameter spiral ties spaced 10 cm apart.

A fiber section approach is used to incorporate the cross-sectional behavior of the foun-

dations into the finite element models. The fiber section model is discretized into subregions,

Figure 7.8, which are assigned uniaxial constitutive behavior corresponding to the type of

material they represent. The uniaxial constitutive models used for the concrete and steel

portions of the fiber section model are shown in Figure 7.9, with the corresponding model

input parameters listed in Table 7.3.

The uniaxial constitutive model assumed for the reinforcing steel, Figure 7.9(b), is a

bilinear plasticity model. The parameters defining the constitutive response of this model
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Figure 7.9: Uniaxial constitutive relations used in fiber section model for drilled shaft.
(a) Concrete model. (b) Steel model. Refer to Table 7.3 for values used in the models.

Table 7.3: Concrete and steel material properties in drilled shaft fiber section model. Refer
to Figure 7.9 for definitions of terms.

Concrete Properties Steel Properties

f ′

c (kPa) εc f ′

cu (kPa) εcu ft (kPa) Et (MPa) σy (MPa) Es (GPa) b

24525 0.003 4905 0.0368 3070 -2039 412 200 0.001

are the steel yield stress, σy, elastic modulus, Es, and strain hardening ratio, b. The design

steel yield stress (Ingenieŕıa Cuatro Ltda., 2006) is used in the model, and the elastic

modulus and strain hardening ratio are assumed based on typical steel behavior.

The concrete constitutive model, Figure 7.9(a), has compressive behavior based on the

work of Kent and Park (1971). The maximum compressive strength, f ′

c, used in the model is

the design compressive strength of the concrete used at Puente Mataquito (Ingenieŕıa Cuatro

Ltda., 2006). A strain at peak compressive stress, εc = 0.003, is assumed per ACI (2011)

recommendations. The post-crushing behavior is defined after Park and Paulay (1975),

where εcu, the strain at which the concrete is considered completely crushed, is based on

the geometry of the core and amount of spiral confinement, and the residual compressive

strength f ′

cu = 0.2f ′

c.

The tensile behavior for the concrete constitutive model is simplified, with a limited

linear elastic capacity followed by linear softening. The tensile strength of the model, ft, is

defined based on the ACI (2011) recommended modulus of rupture for concrete in bending

fr = 0.62
√

f ′

c (7.1)

where fr and f ′

c are in units of MPa. The tension softening stiffness, Et, is determined from

the fracture energy of the concrete using the technique discussed by McGann et al. (2012).



www.manaraa.com

109

0 0.02 0.04 0.06 0.08 0.1
0

2000

4000

6000

8000

10000

Curvature (m−1)

M
om

en
t (

kN
m

)

max moment = 9000 kNm

Figure 7.10: Model moment-curvature response for single drilled shaft foundation at design
axial force.

A moment-curvature analysis is conducted to verify proper implementation of the fiber

section model and establish the capacity of the model shaft foundation. Figure 7.10 shows

the moment-curvature response of a single model shaft foundation. The maximum bending

moment of 9000 kN·m compares favorably with the nominal design moment capacity for

the shaft foundations used in the construction of Puente Mataquito. In some of the models

used in this research, the shafts are modeled using linear elastic section behavior. This

linear elastic response is defined using the initial tangent to the nonlinear moment-curvature

response presented in Figure 7.10.

At the abutments, the shafts are grouped in a 4 × 2 layout with the dimensions and

orientation shown in Figure 7.11. The short dimension of the pile cap corresponds to the

longitudinal axis of the bridge. The shafts at the abutments are 17 m long, and extend from

the pile cap down into the gravel soil layer, ending at a vertical elevation of -16.06 m (see

Figure 7.3). The shafts are grouped in a 3× 1 configuration at the seven interior piers with

the layout and dimensions shown in Figure 7.12. The interior pier shafts are 28.6 m long

and extend from a concrete cap just below the bridge girders into the gravel layer, ending

at an elevation of -22.22 m.

The different types of numerical models used in this research vary in their treatment

of the foundations. For the BNWF models, the grouped shafts at the bridge abutments

are consolidated into a single equivalent shaft model following the procedure recommended

by Caltrans (2011) and discussed in Section 5.1. The plane strain models consider a grouped

pair of equivalent shaft models at the abutment which have the bending stiffness of a row of

four shafts, and single equivalent shaft models at the interior piers with the stiffness of a row

of three shafts. The 3D models consider the full geometry of the shaft group at the southern

abutment, using beam-to-solid contact elements to model the soil-shaft interaction. Each

of these specialized techniques are discussed further in the following sections.
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Figure 7.11: Elevation and plan views of typical abutment for Puente Mataquito (courtesy
Ministerio de Obras Públicas, Chile).

1.25 m

1.25 m

4 m

4 m

2 m

Figure 7.12: Elevation and plan views of typical interior pier shaft cap for Puente Mataquito
(courtesy Ministerio de Obras Públicas, Chile).

7.3 Summary

To support the numerical modeling effort for the Puente Mataquito case study, an idealized

soil profile is defined and a template section model of an individual shaft foundation is

created. The idealized soil profile is used to inform the definition of the soil portion of the

necessary models, and the template section model is the basis for all of the foundations

considered in this work.
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Chapter 8

DYNAMIC PLANE STRAIN MODELS: PUENTE MATAQUITO

A dynamic effective stress plane strain finite element model of the Puente Mataquito

site is created to analyze the dynamic response of the bridge and underlying soils using two

ground motion records. This model uses the idealized soil profile and shaft foundation mod-

els introduced in Chapter 7, and makes use of the efficient element formulations discussed

in Chapter 4. This model is developed to gain a better understanding of the response of

the bridge site to seismic excitation and to inform further modeling efforts.

Initially, two small parameter studies are performed to establish an appropriate soil

domain thickness for use in subsequent models, and to assess the effects of variations in the

assumed liquefiable layer configuration on the response of the site. This is done to verify that

the assumptions made during development of the idealized site soil profile are reasonable.

After the completion of this initial assessment and model verification, further analysis is

performed using the Convento Viejo ground motion record from the 2010 Maule event.

This final dynamic study provides insight into the response of the bridge and surrounding

soils during seismic excitation, allowing for comparison with physical observations made

following the earthquake, and for assessment of the structural demands resulting from any

liquefaction and subsequent lateral spreading simulated by the model.

8.1 Plane Strain Model Development

The plane strain finite element model uses the u-p formulation of the Q1-P1ssp element

to represent the soil continuum, displacement-based beam elements to model the bridge

foundations and superstructure, and uniaxial nonlinear force-displacement curves (p-y, t-

z, Q-z springs) to consider soil-structure interaction effects. The commercial software

GiD (CIMNE, 2008) is used as a pre- and post-processor for OpenSees to facilitate mesh

creation and result visualization.

Figure 8.1 shows the finite element mesh for the plane strain model. Since the width

of the model is far larger than the height, the central portion of the mesh is shown with

increased resolution below a depiction of the full mesh. The colors in the soil domain

represent separate layers within the soil profile. The boundaries and soil properties of these

layers correspond with the idealized soil profile discussed in Section 7.1. Overall, the mesh

is 795 m wide, with 237.5 m of soil on either side of the bridge. The gravel layer is extended

4.78 m below the lower extremity of the interior pier shafts, ending at a vertical elevation of
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-27 m. Two levels of mesh refinement are considered for the plane strain model. The more

refined version has 8031 solid elements and the less refined mesh has 3990 solid elements.

Each mesh includes 360 beam elements and 252 soil-structure interaction elements. The

less refined version of the mesh is used primarily for testing and comparative studies for

which this level of refinement is adequate, while the refined mesh is used for more detailed

analysis of the site.

8.1.1 Boundary and Loading Conditions

The mesh shown in Figure 8.1 represents only a portion of a large soil domain that extends

far beyond practical limitations for the model. The boundary and loading conditions are

implemented to reduce the error associated with this limited model domain as much as

possible. In the vertical direction, the primary goal is to achieve an initial state of stress

representative of the conditions at the site. In the horizontal direction, the emphasis is on

applying the ground motions to the model in a way that is the most consistent with site

conditions and in ensuring that free-field conditions exist at the extents of the model.

To achieve an appropriate initial state of stress in the model, the nodes along the base

of the soil mesh are fixed against vertical translation, and elemental body forces are used

to simulate the effect of gravity on the soil. For the beam elements representing the shaft

foundations, t-z and Q-z springs provide vertical restraint through simulated skin friction

and end bearing, respectively. A distributed loading equivalent to the self-weight of the

bridge is applied to the beams representing the bridge deck.

The base of the model is not a physical boundary between the gravel and an underlying

layer of bedrock, therefore, a rigid base approach to dynamic loading is not ideal. Instead,

ground motions are applied to the model as equivalent force histories using the method

of Joyner and Chen (1975), which considers the compliance of an underlying elastic half-

space, preventing all of the applied energy from becoming trapped inside the considered

domain. To implement the Joyner and Chen (1975) approach, the nodes at the base of

the mesh are constrained to have equal degrees-of-freedom in the horizontal direction with

a control node at the lower left corner of the mesh. This control node is attached to a

rate-dependent viscous damper element set with a dashpot coefficient

c = ρhalfvshalfA (8.1)

where ρhalf and vshalf are the mass density and shear wave velocity, respectively, of an

assumed underlying elastic halfspace, and A is the base area of the model, accounting for

the length of the model and the assigned thickness of the elements. The halfspace parameters

are set as ρhalf = 2.5 Mg/m3 and vs half = 750 m/s for all analysis cases. A force history is

obtained as

Fequiv(t) = ρhalfvshalfAvrecord(t) (8.2)
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where vrecord(t) is the velocity time history of the recorded motion at that depth, and is

applied dynamically at the control node. This approach for ground motion application

considers the compliance of the soil and rock which exists below the extents of the model,

and prevents energy from becoming trapped in the model domain.

The columns of elements at the horizontal extents of the soil mesh, depicted in distinct

colors in Figure 8.1, are used to apply a free-field soil response to the interior of the model.

The elements in these columns are assigned a thickness 100 times larger than that assigned

to the interior elements to ensure that they are significantly more massive. When the ground

motion is applied to the base of the model, these columns of elements respond in the manner

of the free-field soils at the site, while simultaneously transmitting this response into the

interior of the model. The horizontal extents of the mesh are defined such that these free-

field columns are sufficiently removed from the areas of interest. This technique has been

applied to dynamic plane strain analysis by Shin (2007), among others.

8.1.2 Additional Soil Properties for Effective Stress Analysis

The soil properties and constitutive models discussed in Section 7.1 are used in the plane

strain model, however, several additional material properties must be defined for an effective

stress analysis of the site soils. A fluid bulk modulusKfluid = 2.2 GPa and fluid mass density

ρfluid = 1.0 Mg/m3 are used for all soil layers below the groundwater table. Isotropic

permeabilities are assigned to each submerged soil layer, with values of 8.5 × 10−6 m/s,

5.0× 10−3 m/s, and 1× 10−2 m/s corresponding to the loose sand, dense sand, and gravel

layers, respectively. The permeability values are selected to be as similar as possible to the

expected values for each soil type, while producing the desired response in the numerical

model.

8.1.3 Bridge Superstructure and Foundations

Displacement based beam-column elements are used to model the bridge superstructure,

abutments, and shaft foundations. The beam elements representing the shaft foundations

are assigned a section response based on the model drilled-shaft cross-section discussed in

Section 7.2, and both elastic and elastoplastic section responses are considered. For the

interior piers, the section properties of the shaft model are scaled by three to capture the

bending stiffness of a 3 × 1 row of shafts. The beam elements in the piers transition from

this foundation section model to an elastic girder section model at the base of the pier cap

shown in Figure 7.12. The 4× 2 grouped shaft foundations at the abutments are modeled

with two columns of vertical beam elements, assigned the model shaft section properties

scaled by four, connected at the top by a rigid horizontal beam representing the shaft cap.

This configuration is shown in Figures 7.3 and 8.1.
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The beam elements representing the bridge deck, interior piers above the pier caps, shaft

caps, and abutment walls are assigned an elastic section response based on a composite cross-

section defined by the bridge deck and girders. The second moment of area for this composite

deck section is Ideck = 4.58 m4 and the cross-sectional area is Adeck = 7.25 m2. A modulus

of elasticity Edeck = 63.2 GPa is chosen to represent a smearing of the reinforcement and

concrete in the cross-section. The vertical location of the beam elements representing the

bridge deck is the centroid of the composite deck girder cross-section.

8.1.4 Soil-Foundation Interaction Curves

The beam elements used to model the bridge foundations must be linked to the soil mesh in a

manner that accounts for the disparity in what each element type represents in plane strain.

Defining a direct link between the beam and soil nodes implies that the beam elements

represent a wall with an infinitesimally small width in the plane and infinite thickness out of

the plane. An appropriate link between the two element types is developed using interface

elements assigned the constitutive response of commonly used soil-structure interaction

curves that account for the three-dimensionality of the shaft foundations.

Zero-length elements are used for this purpose, with p-y curves defining the horizontal

constitutive response and t-z and Q-z curves applied in the vertical direction. The use

of zero-length elements allows for the beam and solid element nodes to share the same

location within the mesh, thus simplifying mesh generation during pre-processing. Using

this technique, the compatibility of displacements between the foundations and surrounding

soil that occurred at the Puente Mataquito site cannot be directly captured, however, the

mechanisms can still be identified. The modeled soil will displace approximately in the

manner expected for the embedded foundations, and the structural demands in the foun-

dation elements will approximate those in the actual shaft foundations. Another potential

issue with this modeling technique is that the soil response is effectively modeled twice.

The interpretation of the p-y, t-z, and Q-z curves as the near-field soil response, and the

continuum elements as more of a far-field response removes some of this concern, however,

it is important to note the potential for error associated with this doubled soil response.

The p-y, t-z, and Q-z curves in the plane strain model are defined based on existing

relations and previous experience. For the p-y curves, pu values are defined using the

method of Brinch Hansen (1961) and kT values are defined using the API (2007) procedure

corrected for overburden after Boulanger et al. (2003). The t-z curves are defined after the

work of Mosher (1984) and Kulhawy (1991), and the Q-z curves are defined based on the

work of Meyerhof (1976) and Vijayvergiya (1977). Since the beam elements in the model

represent a row of shaft foundations, group effects are considered for the soil-foundation

interaction curves using the p-multipliers of Mokwa and Duncan (2001).

The interface elements connecting the beam elements representing the abutment walls
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Figure 8.2: Location of the Convento Viejo recording site relative to Puente Mataquito.

with the solid elements representing the embankment fill are assigned an elastic-perfectly

plastic constitutive response in compression with zero tensile strength or stiffness. The ulti-

mate capacity of these constitutive models is determined from the Rankine passive capacity

of the soil in the embankments. The elastic stiffness values are set in a similar manner to the

tri-linear curves discussed in Section 5.1.1, with ∆max set equal to 5% of the nodal depth.

At the surface nodes, small non-zero ultimate force and displacement values are assigned

for numerical purposes.

8.1.5 Ground Motions

Two ground motions are used during analysis of the plane strain model, the Convento

Viejo record from the 2010 Maule event and the Gilroy No. 1 record from the Loma

Prieta event. The Convento Viejo recording was made by a triaxial accelerograph located

on rock inside a diversion tunnel for the Convento Viejo embankment dam (ARCADIS,

2010), which is approximately 100 km inland from Puente Mataquito. Figure 8.2 shows

the location of the recording site in relation to Puente Mataquito and several cities. The

horizontal acceleration, a, velocity, v, and displacement, u, time histories for the Convento

Viejo motion are shown in Figure 8.3. The Convento Viejo ground motion record was

obtained via personal correspondence with Christian Ledezma from Pontifica Universidad

Católica de Chile. At the time of the analyses, the Convento Viejo dam was the nearest

available recording site to Puente Mataquito with a rock ground motion record.

The Gilroy Array No. 1 fault parallel record from the 1989 Loma Prieta event (NGA

#765) from the PEER strong ground motion database (PEER, 2010) is used as an alterna-

tive ground motion. While this record does not possess the long duration and high frequency
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Figure 8.3: Acceleration, velocity, and displacement time histories for Convento Viejo
ground motion record.
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Figure 8.4: Acceleration, velocity, and displacement time histories for Gilroy No. 1 ground
motion record.

content characteristic to recorded motions from the Maule event, it is a significantly shorter

motion with fewer recorded time steps, thus facilitating shorter analysis times more suitable

for testing the model and producing comparative studies for different modeling decisions.

The time histories for the Gilroy No. 1 record are shown in Figure 8.4.

Table 8.1 provides the maximum acceleration, velocity, and displacement along with the

Arias intensity, Ia, for each ground motion record. The peak acceleration for the Gilroy

record is significantly larger, however, the peak velocities, peak displacements and Arias

intensities are similar for the two records. As shown in Figure 8.5, the Arias intensities

develop differently for each motion. For the Gilroy record, there are several large amplitude

waves early in the motion and these waves are the primary contribution to the Arias intensity

for the record. The amplitudes for the Convento Viejo record are smaller in comparison,
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Table 8.1: Maximum acceleration, velocity, displacement, and Arias intensity for Convento
Viejo and Gilroy No. 1 ground motion records.

Record amax (g) vmax (m/s) umax (m) Ia (m/s) duration (s)

Convento Viejo 0.147 0.246 0.081 1.74 299.97

Gilroy No. 1 0.473 0.267 0.081 1.68 39.945
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Figure 8.5: Arias intensity values over normalized motion duration for Convento Viejo and
Gilroy No. 1 ground motion records.
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Figure 8.6: Response spectra (5% damping) for Convento Viejo and Gilroy No. 1 ground
motion records.

however, the high amplitude portion of this record lasts over a longer duration, leading to

a slower rate of increase in the Arias intensity. For further comparison of the two ground

motion records, the response spectra at 5% damping are shown in Figure 8.6. As expected,

the two ground motion records produce very different response spectra.
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8.2 Dynamic Plane Strain Analysis: Gilroy No. 1 Ground Motion Record

In order to determine a set of appropriate modeling parameters for use in subsequent models

of the Puente Mataquito site, a series of initial simulations are performed using the Gilroy

No. 1 ground motion record from the 1989 Loma Preita event. This record is shorter and

more forgiving numerically than the Convento Viejo motion (see Section 8.1 for details),

thus enabling a series of analyses to be performed efficiently. The results from these analyses

are compared to each other to gain valid insights into the behavior of the Puente Mataquito

site and to gauge the effect of various modeling choices on the results of the simulations.

Two primary modeling choices are considered in this study: the effect of soil element domain

thickness, and the effect of different liquefiable layer configurations.

8.2.1 Alternative Model Configurations

Several different configurations of the plane strain model are considered in order to assess

the sensitivity of the results to different modeling choices. One set of alternative model con-

figurations is chosen to evaluate the effects of solid element thickness. The incompatibility

between the plane strain continuum elements used to model the soil and the beam-column

elements used to model the bridge foundations necessitates care in the treatment of this

thickness in order to gain appropriate results. This is especially true where the beam ele-

ments represent a row of grouped piles or shafts, as is the case for the Puente Mataquito

model. Typically, plane strain continuum elements are assigned a unit thickness in the

out-of-plane direction. It is likely that this definition does not achieve a realistic soil mass

to foundation stiffness ratio, and as a result, the soil deformation and structural demands

returned from the simulation may be underpredicted. To examine the effect of solid element

thickness on the results, models are created that consider three element thickness values:

20 m, 90 m, and 1 km.

The 20 m thickness is based on the equivalent embankment width, wt, proposed by

Boulanger et al. (2006) for simplified analysis of piled bridge abutments subject to lateral

spreading (see Section 5.1.1, step 5). This equivalent width is computed as the sum of the

crest width with one-half of the width of the sloped sides as shown in Figure 8.7. The 90 m

thickness is based on the surface width of a soil wedge developed over the full length of the

abutment shafts as predicted using strain wedge theory (Ashour et al., 1998). The 1 km

thickness is chosen as a maximum credible value.

Another set of model configurations is used to analyze the liquefaction behavior of the

Puente Mataquito site, primarily with regards to uncertainty in the definition of the lique-

fiable layer for the idealized soil profile. To this purpose, three liquefaction configurations

are considered for the plane strain model: no liquefaction, existing (idealized) liquefaction

conditions, and thick liquefaction conditions. A 90 m soil domain thickness is assumed for
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Figure 8.7: Idealized approach embankment dimensions for Puente Mataquito.

these models. In the case without liquefaction, the permeabilities of the soil elements are

set at 1.0 m/s, such that excess pore pressure will not develop. The existing liquefaction

case considers the idealized soil profile discussed in Section 7.1, and the thick liquefaction

case considers a soil profile in which the loose sand layer expands to replace the dense sand

layer, resulting in a larger zone of liquefiable material. The results of these three cases are

compared to each other and to observations made at the site to determine which liquefaction

configuration is most representative of the Puente Mataquito site.

8.2.2 Effects of Soil Domain Thickness

Figure 8.8 demonstrates the effect of soil domain thickness on the residual horizontal dis-

placement field returned by the model. Larger element thickness results in larger soil de-

formation, as the foundation stiffness is no longer sufficient to resist the movement of the

increased soil masses. Figures 8.9, 8.10, and 8.11 show the progression of pore pressure ratio

fields in the soil for for the 20 m, 90 m, and 1 km thick domains, respectively. As shown,

there is little variation in pore pressure ratio with soil element thickness. The primary

difference is in how long it takes for the large excess pore pressures to dissipate, and, as

shown in Figure 8.8, how the build up of excess pore pressure is manifested in lateral soil

deformation.

Figures 8.12 and 8.13 show the variation in pore pressure ratio with depth in the soil

behind the two bridge abutments over the first half of the Gilroy ground motion. Significant

excess pore pressures begin to develop at roughly the same point in the motion, and the

dissipation of the express pore pressure tends to take longer as the soil domain thickness is

increased. This is likely due to the lateral deformation of the soil above the liquefiable layer

increasing the shear strain for the larger thickness values. Figures 8.14 and 8.15 verify this

hypothesis, as significantly larger shear strains develop in the soil behind the abutments for

the larger domain thickness values, especially on the southwest side.

The global response of the bridge is also affected by changing the thickness of the soil

elements. Figures 8.16, 8.17, and 8.18 show the residual displaced shapes of the shaft foun-

dations for the bridge, arranged in the same orientation used in previous plots of the bridge

model. The general deformation patterns for the 20 and 90 m thick domains are similar,
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Figure 8.12: Spatial and temporal variation of pore pressure ratio in soil behind northeast
abutment for three soil domain thicknesses.
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Figure 8.13: Spatial and temporal variation of pore pressure ratio in soil behind southwest
abutment for three soil domain thicknesses.
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Figure 8.14: Spatial and temporal variation of shear strain in soil behind northeast abutment
for three soil domain thicknesses.
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Figure 8.15: Spatial and temporal variation of shear strain in soil behind southwest abut-
ment for three soil domain thicknesses.
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though the 90 m case sees larger shaft displacements, especially in the southwest abutment

shafts and adjacent interior piers. The shaft displacements for the 1 km thick case are

significantly larger than the other cases, and Pier 7 displays a different bending mechanism

that corresponds to the increased soil deformation in the vicinity of this foundation. For all

three cases, the bridge deck moves towards the northeast side of the river. The shafts at

the northeast abutment are subjected to a combined loading from the liquefaction-induced

soil deformation and the bridge deck, resulting in relatively little displacement of the shaft

cap.

Figure 8.19 shows the bending moment demands in each shaft foundation for all three

soil domain thickness values. These moment diagrams agree with all previous observations,

as the larger deformations resulting from increasing the mass of moving soil result in larger

bending moments in the foundations. For the Gilroy motion, the model suggests that Pier

7 is likely to fail at the connection to the shaft cap for all three thicknesses, as the bending

moment at this location is in excess of the 9 MN·m capacity of the shafts. Failure does not

appear to be likely in any of the other foundations for the 20 and 90 m thick soil domains,

while it appears that most of the foundations have failed for the 1 km thickness value.

For the geometry of the Puente Mataquito site, the 90 m thick soil domain appears to be

the most appropriate choice of the three considered thickness values. Based on the results

obtained from this small parameter study, it seems clear that a 1 km thick soil element

domain is too large. The embankment and foundation deformations for this case far exceed

the observations made at the site, and while this thickness may seem appropriate for the

native portion of the soil profile, it is much to large for the embankment. The 20 m and 90 m

thick element domains produce similar global results, and it is not immediately apparent

from these results which is a better choice for this particular site. While the 20 m thickness

accurately portrays the mass of the embankment fill, it may consider an insufficient mass

of native soil in comparison to the foundation stiffness given the thickness of the grouped

shafts, therefore, the 90 m thickness is selected for use in subsequent analyses.

8.2.3 Effects of Liquefiable Layer Thickness

The residual horizontal soil deformation fields for each liquefiable layer configuration are

shown in Figure 8.20. There is a dramatic difference in the displacement magnitude between

the three cases, with the larger liquefiable zone leading to significantly larger deformation.

Figure 8.21 shows the progression of the pore pressure ratio field in the soil for the thick

liquefiable layer configuration. As expected, increasing the scope of the liquefiable zone

results in increased liquefaction throughout the soil profile.

The effects of the increased liquefiable zone are also clear in Figures 8.22 and 8.23,

which show the variation of pore pressure ratio with depth and time in the soil behind the

northeast and southwest abutments, respectively, for the existing and thick liquefiable layer
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Figure 8.22: Spatial and temporal variation of pore pressure ratio in soil behind northeast
abutment for two liquefaction configurations.

configurations. For the thick liquefaction configuration, the build up of significant excess

pore pressure affects a larger amount of the soil profile, especially for the northeast side, and

these excess pore pressures take much longer to dissipate. Figures 8.24 and 8.25 show the

spatial and temporal variation of shear strain in the same locations behind the abutments

for all three liquefiable layer configurations. For both sides, the maximum shear strains

increase as the scope of liquefaction is increased. The shear strains on the southwest side

are larger than those on the opposite bank, corresponding to the soil deformation fields

shown in Figure 8.20.

Figures 8.26, 8.27, show the residual displaced shapes of the shaft foundations for the

non-liquefiable and thick liquefiable layer configurations. Figure 8.17 shows the correspond-

ing results for the existing liquefiable layer configuration. In the absence of liquefaction,
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Figure 8.23: Spatial and temporal variation of pore pressure ratio in soil behind southwest
bridge abutment for two liquefaction configurations.

the shaft deformations are relatively small, with a maximum value of 2.6 cm in Pier 7 and

shaft cap displacements of approximately 2.0 cm at each abutment. Very large shaft de-

formations are returned for the thickened liquefiable layer configuration. For this case, the

southwest abutment shaft cap translates 19 cm towards the river, pushing the bridge deck

in the same direction and causing the northeast shaft cap to move 5.5 cm away from the

river. The interior piers are severely deformed with the thick configuration, and as shown

in Figure 8.28, based on the bending moment demands in the shafts, failure or near-failure

is predicted for all of the bridge foundations.

Based on the results for the three considered liquefiable layer configurations, it appears

the layer configuration used in the idealized soil profile best represents the Puente Mataquito

site response. The soil deformation in the absence of liquefaction is too minor in comparison
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Figure 8.24: Spatial and temporal variation of shear strain in soil behind northeast abutment
for three liquefaction configurations.
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Figure 8.25: Spatial and temporal variation of shear strain in soil behind southwest abut-
ment for three liquefaction configurations.
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to the site observations, while the shaft bending demands and deformations are too severe

for the thickened liquefaction configuration. This small parameter study provides confidence

that the idealized soil profile adequately describes the soil conditions at for the case study

site.

8.3 Dynamic Plane Strain Analysis: Convento Viejo Ground Motion Record

The response of the Puente Mataquito soils to the Convento Viejo ground motion record

are examined in order to gain an understanding of how the site may have responded during

the Maule earthquake. It is important to establish whether or not the model predicts

liquefaction to occur for this motion, and to determine the consequences of liquefaction if it

does occur. This initial numerical study is used, along with the observations made during

post-earthquake reconnaissance at the site, to inform the remainder of the numerical work

for Puente Mataquito.

8.3.1 Global Soil Response

The residual soil deformation profiles are assessed to determine if the model predicts the

development of lateral spreading due to the Convento Viejo motion. Figure 8.29 shows

the residual horizontal and vertical displacement fields that exist after the ground motion

has been applied to the model. As shown, the large horizontal soil deformation (> 3.0 m)

occurs between the two abutments on the banks of the river and along the river bed. In

comparison, relatively little horizontal deformation occurs behind the abutments, indicating

that the bridge deck and foundations provided sufficient restraint. The residual vertical

deformation is more uniform over the soil domain shown in Figure 8.29, with approximately

30 cm of downward displacement at the top of the embankment fill behind each abutment.

The largest vertical deformations occur on the slopes of the river bank, and the horizontal

and vertical soil deformation here causes the uplift of material on the southwest river bed.

The residual deformation profiles of Figure 8.29 suggest that lateral spreading has oc-

curred due to liquefaction-induced loss of strength in the underlying soils, however, an

examination of the pore pressure response in the soil is necessary to confirm this observa-

tion. Figure 8.30 shows a sequence of pore pressure ratio profiles during the application of

the Convento Viejo motion. After 60 s, the material along the river bed has reached pore

pressure ratios at or near 1.0, indicating that excess pore pressure has become approximately

equal to the mean effective stress, and little strength remains in this region. At 120 s, the

liquefiable material below the approach embankments display pore pressure ratios indica-

tive of liquefaction, and this pore pressure ratio profile remains essentially constant for the

remainder of the motion. Figure 8.31 shows the progression of horizontal soil deformation

over the first 180 s of the motion. Lateral deformation between the abutments gradually
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increases over this portion of the motion, and essentially reaches a steady state value after

180 s with very little change over the remaining duration.

The pore pressure response of Figure 8.30 demonstrates a flaw in the modeling approach

for this site and ground motion. When the elements in the liquefiable loose sand layer reach

a strength state corresponding to ru ≈ 1.0, the elements deform such that the excess pore

pressure does not dissipate as would be expected after the conclusion of the strong shaking

in the ground motion record. The cause of this behavior is likely due to the numerical

difficulty in capturing the build-up of excess pore pressure and corresponding soil shear

strength loss due to the large number of high frequency cycles present in the Convento

Viejo ground motion record. The results obtained using the Gilroy No. 1 record, which

has a considerably lower frequency content, do not display this type of response for the

same site geometry and element formulations. Additionally, this behavior is not isolated to

the Q1-P1ssp element, as a secondary analysis using a standard Q1-P1 element displays a

similar response.

The consequences of this undesirable element response are relatively minor in terms of

the desired outcomes for this study. The absence of pore pressure dissipation likely increases

the magnitude of the residual displacements in the model, however, the trends shown in the

results are still valid. A soil deformation pattern and pore pressure response indicative of

liquefaction-induced lateral soil deformation (lateral spreading) is evident in the results of

Figures 8.29 through 8.31. Large lateral displacements in the soil in and adjacent to the

river, and vertical slumping of the embankments are predicted by the model, corresponding

with observations made at the site. Details of the response in the foundations and adjacent

embankment fill obscured in this global view of the results are examined following discussion

of the global structural response for the bridge.

8.3.2 Global Structural Response

The build-up of excess pore pressure and subsequent soil deformation observed in Fig-

ures 8.29 through 8.31 place kinematic demands on the bridge abutments and embedded

shaft foundations. The residual displaced shapes of the shaft foundations for the bridge

are shown in Figure 8.32, arranged to correspond with the spatial location of each pier and

abutment shaft. The corresponding shear force and bending moment demands are shown

in Figures 8.33 and 8.34. The extents of the liquefiable loose sand layer at each location

are shown in gray in these plots. Though the soil deformation on the northeast bank is

larger, Pier 7 displays the largest displacement demand of the interior piers. This makes

sense in the context of the soil profile, as the large soil deformations on the northeast bank

are shallow, indicating that the soil can flow around the piers, while the soil deformation on

the southwest bank extends deeper and thus engages more resistance from the embedded

foundation.
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Table 8.2: Maximum in-span displacement, shear force, and bending moment demands in
abutment shaft foundations for Convento Viejo analysis.

shaft group max disp (cm) max shear (MN) max moment (MN·m)

north abutment 1 4.7 1.5 5.1

north abutment 2 4.5 1.3 5.2

south abutment 1 3.5 1.0 5.3

south abutment 2 3.1 1.9 5.5

The abutments have similar maximum residual displacements, 4.7 cm at the northeast

abutment and 3.5 cm at the southwest abutment, though slightly different mechanisms

appear to govern their response. The shaft cap at northeast abutment tends to displace

purely in a horizontal manner with only minor rotation, while the southwest shaft cap

shows more rotation due to resistance from the bridge deck. These observations, along with

the deformation patterns for the interior piers, which all exhibit positive displacement at

the top, show that the entire bridge is translating in the positive x-direction (to the right

in the plots). The moment and shear demands in the abutment shaft foundations are also

reasonably similar, though, as shown in Table 8.2, the maximum in-span shear and moments

are somewhat larger on the southwest side.

The observed shaft displacements correlate well with observations made at Puente

Mataquito. Deformation of the northeast abutment was assumed to be around 5 cm based

on superficial concrete cracking/spalling, and shear cracks in the cap for Interior Pier 1 sug-

gest the river-ward displacement of this foundation. Measurable or visible deformation of

the southwest abutment was not noted, however, displacement could have occurred without

visible damage. The rotation of the southwest abutment observed in the model could also

have reasonably occurred without attendant damage. Overall, it is encouraging that the

trends observed in the plane strain model correlate roughly with observations made during

the reconnaissance effort.

8.3.3 Abutment and Embankment Response

It is of interest to examine the response of the soil near the abutment foundations more

closely in order to confirm observations made at the global level. Of particular interest

is to assess the evidence of lateral spreading and associated embankment failure that may

be obscured by the magnitude of the soil deformation along the river. Figure 8.35 shows

the variation of pore pressure ratio with depth over the course of the motion in the soil

behind the two abutments. Figures 8.36 and 8.37 show the spatial and temporal variation

of shear strain behind the northeast and southwest abutments, respectively. As shown in

these plots, nearly half of the higher amplitude portion of the motion has elapsed before

significant excess pore pressure begins to develop, with larger shear strains developing 10
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Figure 8.35: Spatial and temporal variation of pore pressure ratio in soil behind abutments.

to 20 s after the onset of liquefaction. As expected, the largest shear strains are found at

the boundary of the liquefiable loose sand and denser sand layers.

To assess how the pore pressure ratio and shear strain profiles shown in Figures 8.35

through 8.37 are manifested as soil deformation, the displacement fields near the abutments

are computed and plotted in Figure 8.38. In this plot, the size and color of the vectors

indicate magnitude, and the directions of the vectors correspond with the direction of dis-

placement. As shown, the primary component of embankment deformation is downward,

and significant horizontal deformation is limited to the immediate vicinity of the abutment

wall. Each of these displacement fields suggest the formation of a failure surface in the

embankment, especially if the deformation in front of the abutments is considered as a part

of the failure mass.



www.manaraa.com

149

el
ev

at
io

n 
(m

)

max shear strain (%)
0 0.5 1 1.5

−25

−20

−15

−10

−5

0

5

10

time (sec)

 

 

0 50 100 150 200 250
0

0.1875

0.375

0.5625

0.75

0.9375

1.125

1.3125

1.5

−0.2

0

0.2

ac
ce

le
ra

tio
n 

(g
)

Figure 8.36: Spatial and temporal variation of shear strain in soil behind northeast abut-
ment.
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8.4 Summary

Two small parameter studies performed using the Gilroy No. 1 ground motion record have

demonstrated the effects of soil element thickness and liquefiable layer configuration on

the response of the Puente Mataquito plane strain model. This work has established the

importance of defining a soil domain that has sufficient mass in comparison to foundation

stiffness, and determined that for the site conditions used in the model, a 90 m thick soil

domain appeared to be the most applicable definition for the continuum elements in this

model. This work also verified that the liquefiable layer definition assumed in the idealized

soil profile appropriately reflects the site conditions based on a comparison of the results in

the model with observations made at the bridge site.

The results of the Convento Viejo analysis establish the susceptibility of the site to

liquefaction for a ground motion that is representative of that experienced by the bridge,

demonstrate that the plane strain model is able to predict trends that correspond to physical

observations made at the site, demonstrate some of the mechanisms leading to liquefaction

and lateral spreading, and reveal the consequences of these phenomena. Based on these

results, both bridge abutments appear to be strong candidates for future study using a

combination of the pile pinning approach and a 3D finite element model, but since only

one will be considered, the southwest abutment is selected for further inspection. Both the

Gilroy and Convento Viejo analyses predict liquefaction and attendant lateral soil deforma-

tion at this location, and the Convento Viejo analysis reveals a more interesting deformation

mechanism with the rotation of the shaft cap observed at the southwest abutment. The

interaction of the bridge deck, abutment walls, and shafts during lateral spreading has been

identified as an important factor in determining the structural response during this type of

event (Franke, 2011), a 3D model of this abutment will allow for a detailed study of these

effects.
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Chapter 9

SIMULATION AND ASSESSMENT OF EFFECTS OF LATERAL

SPREADING ON SOUTHWEST ABUTMENT TO PUENTE

MATAQUITO

The dynamic plane strain models discussed in the previous chapter confirmed the sus-

ceptibility of the site to both liquefaction and lateral spreading, and identified the southwest

abutment for use in further evaluation of the effects of lateral spreading on bridge founda-

tions. Two very distinct methods are used for this purpose: (1) the pile pinning analysis

procedure adopted by Caltrans (2011) involving a combination of a BNWF model of the

foundation and a slope stability model of the site, and (2) a series of 3D finite element

models of the grouped shaft foundation, abutment, and surrounding soils. The results ob-

tained through the application of these modeling approaches to the southwest abutment are

presented and analyzed following discussions on the development of the necessary numerical

models.

9.1 Pile Pinning Model Development

The pile pinning model of the southwest bridge abutment is created following the Caltrans

(2011) procedure for the restrained ground displacement case presented in Section 5.1. This

model is considered in order to assess the viability of this design approach through compar-

ison with the observations made at the bridge site and the bending demands resulting from

3D finite element models. To this purpose, a BNWF model of the foundation is developed

by converting the 4× 2 pile group (Figure 7.11) into an equivalent single shaft model, and

through the definition of soil-shaft interaction (p-y) curves that appropriately represent the

idealized soil profile and account for group effects. In addition to this BNWF model of the

foundation, a limit equilibrium slope stability model is developed for use in determining the

compatible force-displacement state which defines the final design displacement in the pile

pinning approach.

9.1.1 Development of Foundation Model

The southwest abutment foundation is converted into an equivalent beam model using the

Caltrans recommendations for the pile pinning analysis procedure. Two versions of the

equivalent beam model are created, one which considers a linear elastic shaft response, and

one which considers the nonlinear section response of the shaft foundations. The properties
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Table 9.1: Properties of linear elastic equivalent beam model for grouped shaft foundation.

Parameter Single Shaft Equivalent Shaft

E 21.3 GPa 21.3 GPa

I 0.2485 m4 1.988 m4

A 1.7671 m2 14.137 m2

G 8.52 GPa 8.52 GPa
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Figure 9.1: Model moment-curvature response for nonlinear equivalent beam model of
grouped shaft foundation.

of the equivalent linear elastic shaft section are determined using the geometry of the shaft

and the initial bending stiffness indicated in the moment-curvature plot of Figure 7.10,

which, for a single shaft, is EI = 5.295 GN·m2. A gross second moment of the area for

a single shaft, Ig = 0.2485 m4, suggests an elastic stiffness E = 21.3 GPa, and, for an

assumed Poisson’s ratio ν = 0.25, a shear stiffness G = 8.52 GPa. The section parameters

for a single shaft are scaled by the number of shafts in the group to obtain values for use

in the equivalent beam model. The properties of this linear elastic equivalent beam model

are provided in Table 9.1. The nonlinear equivalent beam model is defined by scaling the

single shaft moment-curvature response by the number of shafts in the group, resulting in

the equivalent beam model moment-curvature response shown in Figure 9.1. The stiffness

of the shaft group is likely underrepresented by the scaling approach adopted for use by

Caltrans, however, the intention of this study is an evaluation of the approach, thus, the

modeling recommendations involved in its use are followed here.

A rotational spring is used to simulate the rotational stiffness of the shaft cap following

the procedure of Mokwa and Duncan (2003). For an axial load of P = 4120 kN, and

assuming that the axial capacity is achieved with 0.25 in of vertical displacement, the axial
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stiffness for a single pile is computed as

ka =
0.75 · 4120 kN

0.0063 m
= 490 MN/m (9.1)

The rotational stiffness for the pile group is based on the number of rows in the shaft cap,

nrow, the number of shafts in each row, npile, and the distance from the center of the row

to the center of the shaft cap, dc, as

kθ = nrownpiled
2
c ka (9.2)

For the geometry of the abutment group at Puente Mataquito,

kθ = 2 · 4 · (3 m)2 · 490 MN/m = 35.3 GN ·m (9.3)

This rotational spring is applied to the equivalent beam model at the location of the shaft

cap. Above this point, the beam model is given a bending stiffness that is many times

larger than the rest of the beam in order to incorporate the abutment into the equivalent

beam model. This relatively rigid abutment portion of the beam is assigned linear elastic

behavior for both the linear elastic and nonlinear equivalent beam models.

It should be noted that the equivalent beam models defined using the Caltrans (2011)

procedure under-represent the bending stiffness of the pile group, which should fall some-

where between the values reported above and the assumption that the group acts as a single

beam during the application of lateral loads. The addition of the rotational spring to the

model provides some compensation, but even with this spring, the equivalent model may

represent an oversimplification of the true foundation response.

9.1.2 Definition of p-y Curves

In the BNWF model, the soil response is represented by a series of p-y curves defined based

on the idealized soil profile with the properties presented in Table 7.1. These curves are

defined with ultimate lateral resistance, pu, values computed using the method of Brinch

Hansen (1961) and initial stiffness, kT , values computed using the API (2007) recommen-

dations corrected for overburden stress after Boulanger et al. (2003).

Group effects are incorporated into the BNWF model using the group efficiency factors

of Mokwa and Duncan (2001) and the procedure recommended by Caltrans (2011). The

efficiency factors for the leading and trailing rows are 0.88 and 0.67, respectively. The group

effect p-multiplier for the equivalent shaft model is computed as the product of the number

of piles with the average of the leading and trailing row values

pgroup =
8 · (0.88 + 0.67)

2
= 5.88 (9.4)
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The residual strength of the liquefiable soil is computed using the undrained shear

strength expression recommended by Ledezma and Bray (2010)

Sur

σ′

v

= exp

(

N1,60 cs

8
− 3.5

)

(

1 +

(

0.3N1,60 cs

)2

128

)

0 ≤ N1,60 cs ≤ 20 (9.5)

where Sur is the undrained shear strength, σ′

v is the vertical effective stress, and N1,60 cs

is the clean sand corrected SPT blowcount. This expression is a weighted average of the

procedures proposed by Seed and Harder (1990), Olson and Stark (2002), Kramer (2008),

and Idriss and Boulanger (2007). The undrained shear strength is used to define the pu
values of the p-y curves within the liquefiable loose sand layer, and is computed using the

average SPT value assumed for this layer when defining the idealized soil profile of the

site. Using this approach, the average undrained strength for the layer is 11.7 kPa, and the

undrained strength varies with overburden pressure as Su/σ
′

v = 0.11. A linear smearing is

used to reduce the pu values for the p-y curves within one shaft diameter of the liquefiable

layer boundaries per the recommendations of Caltrans (2011) and Ashford et al. (2011).

9.1.3 Definition of Abutment-Soil Interaction Curve

A tri-linear force-displacement curve is used to model abutment-embankment interaction in

the BNWF model. As shown in Figure 5.3, this tri-linear curve is defined in terms of two

variables, the ultimate passive force and the displacement at which this force is assumed

to be fully developed. Using the geometry and properties of the embankment fill assumed

for the idealized soil profile of the site, an ultimate lateral force Fult = 94 MN is computed

assuming the development of a Rankine passive wedge at a displacement of ∆max = 0.51 m.

9.1.4 Pseudostatic Slope Stability Model

The determination of the compatible force-displacement design state for the restrained

ground displacement case requires the comparison of the results obtained from a pushover

analysis of the BNWF model described in the preceding sections with the results of a slope

stability analysis of the abutment site. For this purpose, a pseudostatic slope stability model

is developed using Slide 6.0 (Rocscience, 2010) for the geometry and properties assumed

in the idealized soil profile. This model is used to compute the horizontal resisting force

required at the center of the liquefiable layer to reach a factor of safety FS = 1.0 for a series

of horizontal yield accelerations ky = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4.

To assess the sensitivity of the final design result to choices made during the analysis

steps, several versions of this model are developed and analyzed. Two limit equilibrium

methods are considered, the simplified Bishop method (Bishop, 1955) and the simplified

Janbu method (Janbu, 1973). The failure surfaces are restricted such that they do not
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extend more than four times the embankment thickness behind the abutment to eliminate

complex effects related to a very large slide mass per the suggestion of Ashford et al. (2011).

Four cases are considered for each limit equilibrium approach:

• Fdeck = 0 kN/m with constant Su = 11.7 kPa in the liquefiable layer.

• Fdeck = 377 kN/m with constant Su = 11.7 kPa in the liquefiable layer.

• Fdeck = 0 kN/m with Su/σ
′

v = 0.11 in the liquefiable layer.

• Fdeck = 377 kN/m with Su/σ
′

v = 0.11 in the liquefiable layer.

The non-zero Fdeck value is determined from the full passive resistance of the embankment

fill acting over the 2.74 m depth of the bridge deck, and is applied at the centroid of the

bridge deck/girder cross-section. The constant undrained strength values are the average

value for the layer, and the overburden dependent values correspond to the SPT profiles

assumed for the idealized soil profile.

9.2 Application of Pile Pinning Analysis Procedure to Southwest Abutment

The BNWF equivalent shaft foundation and limit equilibrium slope stability models devel-

oped for the southwestern abutment of Puente Mataquito are used to determine compatible

force-displacement states for the bridge abutment and approach embankment. The viability

of this design approach is assessed through comparison with observations made at the site,

and in subsequent sections, with the structural demands resulting from plane strain and 3D

models of the bridge. The variability in the estimated compatible state is demonstrated by

considering various modeling decisions and assumptions throughout the procedure, and an

approach for estimating an appropriate compatible state amidst the observed variability is

proposed.

9.2.1 Initial Pushover Analysis of Foundation Model

The equivalent shaft BNWF model of the southwestern abutment is analyzed in a pushover

analysis simulating the kinematic demands of lateral spreading. As discussed in Sec-

tion 5.1.1, this pushover analysis is conducted by applying a set displacement profile to

the soil end of the p-y springs supporting the foundation. The applied displacement profile

used for this purpose is set at a constant 1.0 m in the upper layers, linearly-increasing from

zero to 1.0 m across the liquefiable layer, and zero in the underlying material as shown in

Figure 9.2.

The purpose of this analysis is to obtain a curve defining the relationship between the

applied surface displacement and the foundation shear force at the center of the liquefiable
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foundation model

dry loose sand

embankment fill

gravel

dense sand

sat. loose sand

∆ = 1.0 m

bridge foundation

Figure 9.2: Applied displacement profile for equivalent shaft BNWF model of Puente
Mataquito southwestern abutment.

loose sand layer. The unmodified shear force, Vunmod, recorded at this location for each

step in the analysis is used to compute a corresponding running average shear force, Vrun,

which, at recorded step j, is computed as

Vrun(j) =

j
∑

i=1

Vunmod(j)

j
(9.6)

This running average shear force, introduced by Boulanger et al. (2006), is recommended for

use in subsequent analysis steps to account for a discrepancy in how the force in the middle

of the liquefied layer is treated in the pushover and slope stability phases of the procedure.

In the current work, the unmodified and running average values are both considered in order

to assess how each definition affects the compatible force-displacement state determined at

the end of the procedure.

9.2.2 Slope Stability and Deformation Analysis

The slope stability model is used to compute the horizontal resisting force required at the

center of the liquefiable loose sand layer to reach a factor of safety FS = 1.0 for a series

of horizontal accelerations. As discussed in Section 9.1.4, several configurations of this

model are considered in order to assess the sensitivity of the results to different modeling

decisions. Table 9.2 shows the foundation resisting force values determined for each slope

stability analysis approach (Bishop, 1955; Janbu, 1973) with various model parameters.
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Table 9.2: Foundation resisting forces (in kN/m) necessary to reach FS = 1.0.

constant Su varying Su

Fdeck = 0 Fdeck = 377 kN/m Fdeck = 0 Fdeck = 377 kN/m

ky (g) Bishop Janbu Bishop Janbu Bishop Janbu Bishop Janbu

0.05 25 136 45 0 0 42 45 0

0.10 192 403 55 38 0 88 46 0

0.15 426 716 223 340 65 344 48 0

0.20 697 1047 476 695 290 649 87 272

0.25 973 1321 747 1039 571 996 339 619

0.30 1229 1693 1025 1325 865 1341 624 986

0.35 1511 1884 1286 1643 1216 1639 919 1352

0.40 1913 2201 1602 1911 1627 1982 1314 1651

As expected, using a variable strength in the liquefiable layer or a non-zero deck resis-

tance requires less foundational resistance to achieve FS = 1.0 than the corresponding cases

with constant Su or Fdeck = 0. An interesting aspect of the results in Table 9.2 is that

the choice of analysis method makes a significant difference in the stabilizing force returned

for a given yield acceleration. In general, the Janbu approach returns larger forces for a

given combination of ky, Fdeck, and Su than those computed using the Bishop approach.

With Fdeck = 377 kN/m, the passive force of fill acting over the depth of the bridge deck,

the Bishop approach appears to have issues at lower yield accelerations, especially for the

variable Su cases, as the required resisting forces are larger than for Fdeck = 0.

The displacements necessary for determination of the compatible state for the foundation

are estimated using a Newmark rigid sliding block approach for each considered acceleration

value. The predictive model of Bray and Travasarou (2007) is used for this purpose. Using

this model, the nonzero displacement d in centimeters can be estimated for the Newmark

rigid sliding block case as

ln(d) =− 0.22 − 2.83 ln(ky)− 0.333(ln(ky))
2 + 0.566 ln(ky) ln(PGA)

+ 3.04 ln(PGA)− 2.44(ln(PGA))2 + 0.278(M − 7)± ǫ (9.7)

where PGA is the peak ground acceleration of the ground motion, M is the moment mag-

nitude of the event, and ǫ is a normally distributed random variable with zero mean and

a standard deviation of 0.66. The variability in this estimated displacement is considered

by computing the 16 and 84% exceedance values from (9.7), thus establishing a range of

estimated displacement values for each foundation resisting force. Because the standard

deviation for the natural logarithm of displacement is 0.66, these values are computed as

as d16% = exp(d − 0.66) and d84% = exp(d + 0.66), respectively. Table 9.3 lists the 16%,

mean, and 84% displacements estimated from (9.7) using the magnitude, Mw = 8.8, and

peak ground acceleration, PGA = 0.4 g, of the 2010 Maule event.
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Table 9.3: Displacements estimated using Bray and Travasarou (2007) procedure.

ky (g) d16% (cm) d (cm) d84% (cm)

0.05 42.0 80.9 155.9

0.10 13.8 26.8 51.6

0.15 3.9 10.9 22.3

0.20 0.0 3.3 9.8

0.25 0.0 0.0 3.8

0.30 0.0 0.0 0.0

0.35 0.0 0.0 0.0

0.40 0.0 0.0 0.0

9.2.3 Determination of Compatible Force-Displacement State

The foundation displacement used for design purposes is determined by finding the com-

patible state indicated by the initial foundation pushover and slope stability/deformation

analyses. This is accomplished by plotting the force-displacement data returned from each

analysis type and noting the intersection of the two curves. The foundation resisting force

values determined in the slope stability analysis represent the resisting force per unit width

of soil, thus, in order to compare the two data sets, the shear force values computed in the

pushover analysis must be divided by an appropriate width. Two widths are considered for

this purpose, the embankment crest width, w = 12.4 m, taken from the actual geometry at

Puente Mataquito, and the tributary embankment width, wt = 19.9 m, computed per the

recommendations of Boulanger et al. (2006) (see Figure 5.6 for further information).

Figure 9.3 shows the compatibility plots for pushover curves defined with both the

running average and unmodified shear forces, Vrun and Vunmod, respectively, scaled by w

and wt and slope stability/deformation curves computed using the Janbu method with

overburden dependent strength in the liquefiable layer and Fdeck = 377 kN/m. The curve

for the mean displacement, d, is shown as a solid line, and the d16% and d84% curves are

shown as dashed lines. The compatible states resulting from the same set of parameters,

but with the Bishop method of slope stability analysis, are shown in Figure 9.4. These

plots represent only a portion of the considered cases, however, they provide and example

of how the compatible state is determined for actual data, and demonstrate the variability

of the compatible state for a series of modeling decisions. Tables 9.4 and 9.5 provide

the compatible displacement values determined for each considered combination of model

parameters. The maximum values for Fdeck = 0 and Fdeck 6= 0 and the minimum overall

value are highlighted. The boxed values represent the range of displacements corresponding

to the modeling decisions recommended by Martin et al. (2002) as modified by Boulanger

et al. (2006) and Ashford et al. (2011).
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Figure 9.3: Compatible force-displacement states using the Janbu (1973) method for slope
stability analysis with a varying Su in the liquefied layer and Fdeck = 377 kN/m.
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Figure 9.4: Compatible force-displacement states using the Bishop (1955) method for slope
stability analysis with a varying Su in the liquefied layer and Fdeck = 377 kN/m.
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Table 9.4: Compatible displacements (in cm) for various pushover and slope stabil-
ity/deformation curves using the method of Janbu (1973).

16th percentile displacements – d16%

Fdeck = 0 Fdeck = 377 kN/m

pushover curve constant Su varying Su constant Su varying Su

Vrun/w 10.3 5.7 5.6 2.2

Vrun/wt 13.6 7.7 7.3 2.6

Vunmod/w 4.7 2.8 2.9 1.2

Vunmod/wt 7.5 3.8 3.8 1.7

mean displacements – d

Fdeck = 0 Fdeck = 377 kN/m

constant Su varying Su constant Su varying Su

Vrun/w 13.8 8.5 8.7 4.4

Vrun/wt 20.2 11.0 10.9 5.7

Vunmod/w 6.8 4.1 4.3 2.4

Vunmod/wt 10.3 6.3 6.5 3.1

84th percentile displacements – d84%

Fdeck = 0 Fdeck = 377 kN/m

constant Su varying Su constant Su varying Su

Vrun/w 18.6 12.1 12.6 7.6

Vrun/wt 29.2 16.8 17.2 9.4

Vunmod/w 8.8 6.3 6.6 4.0

Vunmod/wt 15.5 9.1 9.5 5.8
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Table 9.5: Compatible displacements (in cm) for various pushover and slope stabil-
ity/deformation curves using the method of Bishop (1955).

16th percentile displacements – d16%

Fdeck = 0 Fdeck = 377 kN/m

pushover curve constant Su varying Su constant Su varying Su

Vrun/w 6.9 2.6 4.2 1.3

Vrun/wt 9.4 3.2 5.9 2.0

Vunmod/w 3.2 1.4 2.2 0.5

Vunmod/wt 4.4 1.9 3.0 0.8

mean displacements – d

Fdeck = 0 Fdeck = 377 kN/m

constant Su varying Su constant Su varying Su

Vrun/w 9.4 4.7 6.9 2.6

Vrun/wt 13.1 6.3 9.0 3.1

Vunmod/w 4.4 2.4 3.2 1.5

Vunmod/wt 6.9 3.2 4.7 2.0

84th percentile displacements – d84%

Fdeck = 0 Fdeck = 377 kN/m

constant Su varying Su constant Su varying Su

Vrun/w 12.9 7.6 9.6 5.3

Vrun/wt 18.6 9.5 13.4 6.7

Vunmod/w 6.3 3.8 4.8 2.7

Vunmod/wt 9.5 5.6 7.3 3.7
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There is significant variability in the compatible displacements for the different com-

binations of slope stability modeling decisions and pushover curve definition techniques.

Estimated displacements range from 0.5 to 29.2 cm over the full spectrum of considered

cases, and from 0.5 to 17.2 cm for those cases that consider the resistance provided by the

bridge deck. This variability is apparent within the context of the boxed values in Tables 9.4

and 9.5, which range from 3.1 to 10.9 cm. Even if the scope of the study is restricted to

the mean displacement cases with overburden dependent strength for the liquefied layer, as

shown in Figures 9.3 and 9.4, there is variability depending on the particular slope stability

analysis procedure used in the slope stability/deformation analysis.

Figures 9.5 shows the compatibility plot for all of the considered cases and 9.6 shows the

compatibility plot for only the Fdeck 6= 0 cases. The shaded portions of these plots represent

the range of compatible displacements implied by the application of the procedure to the

Puente Mataquito southwest abutment foundation and approach embankment. It is not

practical to assess the foundation performance at all of the compatible states shown in these

plots, however, a range of structural demands can be obtained through consideration of the

minimum and maximum estimated displacements, and the average structural demands can

be estimated by defining an average compatible displacement value. In order to determine a

single displacement that is representative of each data set, the centroid of the shaded areas

defined in the compatibility plots are computed and plotted as solid dots in Figures 9.5

and 9.6. The average displacement states computed with this approach are 11.4 cm for the

full data set and 7.5 cm for the Fdeck 6= 0 cases. The latter value corresponds well with the

boxed displacement values of Tables 9.4 and 9.5.

9.2.4 Assessment of Foundation Performance

With a range of compatible displacements defined using the results of the initial pushover

and slope stability/deformation analysis phases, the final step in the pile-pinning analysis

procedure is the assessment of the foundation performance at the compatible displacement.

This is accomplished using a pushover analysis with the equivalent shaft BNWF model

where the applied surface displacement is set equal to the minimum, average, and maximum

compatible displacement values discussed in the previous section and shown in Figures 9.5

and 9.6. Consideration of these values defines a range of estimated foundation demands

that can be compared to the observed site displacements as well as the results of the 3D

foundation model.

The shaft displacement profiles, shear force diagrams, and bending moment diagrams

resulting from lateral spreading pushover analyses of the BNWF model for each considered

surface displacement are shown in Figures 9.7 and 9.8. The shear forces and bending

moments in these plots are average shaft values computed by dividing the demands returned

by the equivalent foundation model by the number of shafts in the group. As expected,
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Figure 9.5: Variability in compatible state for all considered cases.
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Figure 9.7: Shaft displacement, shear, and moment demands for minimum (0.5 cm), mean
(11.4 cm), and maximum (29.2 cm) compatible states for full data set.
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Figure 9.8: Shaft displacement, shear, and moment demands for minimum (0.5 cm), mean
(7.5 cm), and maximum (17.2 cm) compatible states for Fdeck 6= 0 data set.

the wide range of compatible displacements results in a wide range of estimated foundation

demands, with larger applied displacements leading to larger shear and moment demands.

Table 9.6 provides the maximum shaft displacement, shear force, and bending moment

returned by the foundation model for each compatible displacement value.

Aside from the 0.5 and 7.5 cm cases, the maximum moments returned from this study

are in excess of the 9.0 MN·m design capacity for the Puente Mataquito shaft foundations.

Of the considered displacements, the average for the Fdeck 6= 0 cases, 7.5 cm, is the most

representative of the recommendations of Martin et al. (2002), Boulanger et al. (2006),

and Ashford et al. (2011). It is encouraging that the foundation performance for this

displacement correlates at least roughly with the observed foundation performance under

lateral spreading. Observations at the southwest abutment indicated little or no lateral

displacement of the abutment, which suggests that the shafts were able to restrain the

movement of the foundation while remaining primarily in the elastic regime. For a 7.5 cm

applied displacement, the BNWF model suggests shaft performance in line with the likely

foundation behavior, with the shafts approaching but not reaching the plastic moment

capacity. The estimated and reported abutment displacements are not in direct agreement,

however, the estimated displacement is small enough for the bridge to have experienced while

sustaining little visible damage, and as discussed in Section 6.2 the abutment displacement

may have been underreported.

The discrepancy between the foundation demands for the average displacements result-

ing from full data set and the Fdeck 6= 0 data set highlights the importance of the lateral

resistance provided by the bridge deck in determining the foundation response to the kine-

matic demands of lateral spreading. This is evident in the results of this analysis, as the
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Table 9.6: Maximum shaft displacement, shear, and moment demands for five considered
compatible soil displacement states.

compatible disp max disp (cm) max shear (MN) max moment (MN·m)

0.5 cm 0.55 0.13 0.54

7.5 cm 8.3 1.88 8.06

11.4 cm 12.5 2.82 12.11

17.2 cm 18.8 4.14 17.92

29.2 cm 31.1 6.47 28.20

inclusion or omission of Fdeck in the slope stability analysis phase significantly changes the

compatible displacement state, and is confirmed by the results from the 3D model of the

southwest abutment discussed in the following sections. The inclusion of the bridge deck

resistance as a constant force equal to the full passive resistance of soil acting over the area

of the deck is a convenient approach, but the full passive force may not develop for all dis-

placements and this practice may overestimate the lateral resistance provided by the bridge

deck. Additionally, other site-specific factors may affect the available lateral deck resistance.

Expansion gaps are typically included at the connection of the deck to the abutment, and

a certain amount of displacement must occur before significant deck resistance is available.

It is also possible for the deck to become unseated at larger displacements and, as discussed

by Franke (2011), the factors leading to this response are obscure, as similarly constructed

bridges have displayed opposing deck behavior for similar lateral spreading demands.

Further research is necessary to fully understand all of the factors contributing to the

available deck resistance during lateral spreading, however, there are simpler approaches

that can be incorporated into the pile pinning analysis procedure to consider the uncertainty

in the contribution of the deck resistance to the compatible displacement for the foundation.

One such approach is the use of a running average shear force in the definition of the

pushover curve as proposed by Boulanger et al. (2006). The use of this technique adds

some conservatism to the final result by lowering the pushover curve, which returns a larger

compatible displacement than would be estimated for an unmodified shear force. Another

approach is the consideration of multiple compatible states for which Fdeck is set to both zero

and nonzero values. The pushover and slope stability analyses used in this design procedure

are relatively inexpensive in terms of time and computational effort, therefore, performing

them multiple times is feasible in practice. The range of compatible displacements resulting

from this approach can be used to determine a final displacement estimate, perhaps similar

to the centroidal approach discussed above, or to define a range of foundation demands for

use in design.
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9.3 3D Finite Element Model Development

3D finite element models are created to analyze the response of the southwest approach

embankment, abutment, and grouped shaft foundation to the kinematic demands of lateral

spreading. A schematic of the considered domain for the southwest abutment model is

shown in Figure 9.9, and the basic mesh used for the 3D model is shown in Figure 9.10.

Symmetry is considered to reduce computational demand, and the mesh is selectively refined

such that the elements are smaller near the foundation and the ground surface, and become

larger with increasing distance from these features. Figure 9.11 shows the model with

the solid bodies made transparent to demonstrate how the abutment, embankment, and

shaft cap fit together, and to expose the embedded shaft foundations. For simplicity, the

layer boundaries beneath the abutment in the idealized soil profile are assumed to extend

horizontally over the full model domain, and the gravel layer extends only to the bottom of

the shaft foundations.

The soil is modeled using the H1ssp element introduced in Chapter 4 and the constitutive

models of Elgamal et al. (2003) introduced in Section 7.1. Total stress analysis is assumed

as the H1ssp element makes no consideration for pore pressure effects. The bridge deck

is considered using a linear elastic spring element, the abutment and shaft cap are mod-

eled using a combination of beam-column and solid elements, and the shafts are modeled

with beam-column elements that interface with the surrounding solid nodes via beam-solid

contact elements.

9.3.1 Boundary and Loading Conditions

The boundary conditions for the 3D model are defined to minimize the error associated

with representing only a portion of a very large soil domain. Capturing the response of

the foundations and their immediate surroundings is the primary objective of the model,

therefore, the locations of the mesh boundaries are selected to minimize their effect on this

area. The nodes along the base of the gravel layer (light blue in Figure 9.10) are fixed

against vertical translation, and elemental body forces are used to simulate the effect of

gravity on the soil. The nodes on the symmetry plane are fixed against translation normal

to this plane, and the nodes on the vertical boundary opposite the symmetry plane are

fixed against all horizontal translation. The nodes on the two remaining vertical boundaries

are fixed against out-of-plane translation only. The nodes at the base of the beam-column

elements representing the shaft foundations are supported on Q-z springs to consider end

bearing effects.

The kinematic demands of lateral spreading are achieved in the model by gradually

imposing a set displacement profile to the vertical mesh boundaries as shown in Figure 9.12.

This displacement profile represents the free-field kinematic demands on the soil system,
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Figure 9.10: Base 3D finite element mesh for southwest abutment of Puente Mataquito.

Figure 9.11: Transparent view of base 3D finite element mesh.

with the material above the liquefiable layer translating laterally in relation to the material

below. Applied displacements are constant on the boundaries of the dry loose sand and

embankment fill layers, linearly increasing across the liquefiable saturated loose sand layer,

and held at zero in on the boundaries of the dense sand and gravel layers. No displacements

are imposed on the nodes in the symmetry plane not shared with other vertical boundaries.

9.3.2 Modified Soil Properties

The focus of the 3D modeling effort is to simulate the response of the bridge foundation

to the kinematic demands of a lateral spreading event. It is assumed that effects related
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Figure 9.12: Displacement profile applied to mesh boundaries used to simulate kinematic
demands of lateral spreading.

ε

gap

σ

k

Figure 9.13: Linear elastic constitutive model with gap used in bridge deck spring.

to the initiation of liquefaction are irrelevant to this goal, therefore, the properties of the

liquefiable loose sand are modified to reflect the reduction in strength and stiffness associated

with a liquefied state. This layer is modeled as a pressure independent (J2) material with

a reduced shear modulus G = 6000 kPa, and an undrained shear strength of 18.0 kPa.

The bulk modulus is unmodified, resulting in a nearly incompressible state that reflects the

incompressibility of water. The remaining soil layers in the 3D model (embankment fill, dry

loose sand, dense sand, and gravel) are assigned the soil properties discussed in Section 7.1.

9.3.3 Consideration of the Bridge Deck

The bridge deck is not explicitly considered in the 3D model for Puente Mataquito, instead

the presence of the deck is modeled using a linear elastic spring. An elastic constitutive

model with a gap, Figure 9.13, is used to define the response of the deck spring. This

constitutive model considers zero tensile stiffness and zero compressive stiffness prior to

gap closure. The spring stiffness, k = EA/L, is assigned based on a smeared reinforced

concrete elastic modulus, Edeck = 63.2 GPa, the bridge deck gross cross-sectional area,

Adeck = 7.25 m2, and the span length L = 40 m. The nodes on the abutment coinciding

with the location of the bridge deck, see Figure 9.14, are constrained to have equal degrees-

of-freedom in the direction of loading, and are connected to the free end of the spring

element. The sensitivity of the results to the magnitude of the expansion gap is assessed by

considering a series of expansion gap values.
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Figure 9.14: Incorporation of grouped shaft foundation into 3D model.

9.3.4 Abutment and Grouped Shaft Foundation

Figure 9.14 shows how the grouped shaft foundation is incorporated in to the 3D model.

Displacement-based beam-column elements are used to model the shaft foundations, with

the foundation model discussed in Section 7.2 used to describe the section response. The

shaft foundations consider linear elastic section response in order to determine the theo-

retical structural demands independent of strength. No scaling of the section behavior is

necessary in the 3D model, as each column of beam elements represents a single shaft foun-

dation. Each shaft is loaded vertically with the foundation design axial load P = 4120 kN

and supported at the base by a Q-z spring with parameters computed based on the vertical

stress and soil properties at the base of the shafts. A circular space surrounding the beam-

column elements is built into the mesh to represent the size of the foundation modeled using

the beam-column elements. The beam-solid contact elements of Petek (2006) are used to

enforce a contact condition with the solid element nodes on the outer circumference of this

space. The beam elements are extended beyond the bottom of the solid element mesh to

ensure contact is enforced with the nodes at the base of the mesh.
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Figure 9.15: Example of gapping behavior simulated with beam-solid contact elements.

The shaft cap and abutment are modeled primarily using solid elements. These elements

are assigned a linear elastic constitutive response, with elastic parameters G = 1.3 GPa

and K = 2.5 GPa. As shown in Figure 9.14, beam elements are used to form a frame

inside of the cap and abutment bodies. The beam elements inside the shaft cap serve to

rigidly tie the shafts together within the cap. The beam elements inside the front wall of

the abutment are used to transmit forces acting on the abutment into the grouped shaft

foundation, and the nodes at the top of these elements are constrained to have equal degrees-

of-freedom in the direction of loading with the bridge deck spring. All of the beam elements

in the abutment/cap frame are assigned linear elastic behavior with a large enough bending

stiffness such that these elements are rigid in comparison to the shaft section model.

The beam-solid contact element of Petek (2006) is very advantageous in the context of

the 3D model. This element allows the shaft foundations to be modeled using beam-column

elements, thus enabling the use of fiber section models and the interpretation of results in

the context of traditional beam theory, and creates a contact interface capable of capturing

frictional stick-slip and gapping behaviors. Figure 9.15 shows an application of this element

to a pile pushover analysis. As shown, the beam elements do not come into direct contact

with the surrounding solid elements, and a gap develops on the trailing edge of the pile while

the soil deformation on the leading edge matches the pile deformation. For the purposes of

efficiency, the original beam-solid contact elements of Petek (2006) are extended to include

a penalty formulation in the enforcement of the contact condition. This extended version

of the element is used in all of the 3D modeling presented in this work, and the necessary

modifications are summarized in the following discussion.

9.3.4.1 Extension of Beam-Solid Contact Element to Penalty Constraints

The current formulation for the beam-solid contact element developed by Petek (2006) uses

the method of Lagrange multipliers to enforce the contact constraints. Using this approach,
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the virtual work for the contact system is expressed in terms of the gap, g, the slip, s,

normal force, tn, and tangential force ts, as

δWc = tnδg + δtng − tsδ̇s (9.8)

From this expression and its linearization, the element force vector,

R =

{

tnBn −Bsts
g

}

(9.9)

where Bn and Bs are terms related to the variation of the gap and slip, respectively, and

the element tangent stiffness matrix,

K =

[

−BsCssB
T
s Bn −BsCsn

BT
n 0

]

(9.10)

where Css and Csn are constitutive terms for a frictional contact interface, are obtained

using an augmented nodal degrees-of-freedom vector defined as

q∗ =

{

q

tn

}

(9.11)

where q is the nodal degrees-of-freedom vector for the element. Please refer to Petek (2006)

for further definition of terms and a discussion on the full formulation and implementation

of the beam-solid contact elements.

The Lagrange multiplier technique used in the original element formulation is effective

in enforcing the contact constraints, however, the OpenSees implementation of the element

requires an additional node to provide the necessary extra degree-of-freedom. This increases

the size of the global system of equations, and complicates mesh generation. Additionally,

the enforcement of the constraints is absolute under the Lagrange multiplier approach,

which can lead to numerical issues for certain problems. For the current work, the beam-

solid contact element of Petek (2006) is extended to use a penalty approach for constraint

enforcement. Use of the penalty method relaxes the constraint enforcement, creating a more

forgiving contact surface and removing the requirement for additional degrees-of-freedom

in the elemental and global systems.

The transition to penalty constraint enforcement begins with a reformulation of the

virtual work expression to

δWc = ǫḡδḡ + tsδ̇s (9.12)

where ḡ is the penetration, and ǫ > 0 is the penalty parameter. Under penalty constraints,

the bodies in contact are able to interpenetrate, thus the substitution of a penetration

function for the gap used in the Lagrange multiplier approach. The amount of penetration
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Figure 9.16: Mesh for wide embankment geometry intended to simulate 2D assumptions.

allowed depends on the magnitude of the penalty parameter. The reformulated virtual work

expression and its linearization lead to new expressions for the element force vector,

R = ǫḡBn −Bsts (9.13)

and the element tangent stiffness matrix,

K = ǫBnB
T
n +BsCssB

T
s +BsCsnB

T
n (9.14)

Beyond replacing the augmented nodal degrees-of-freedom vector, q∗, with the natural

vector of nodal degrees-of-freedom for the element, q, no other aspect of the original element

formulation must be changed in the extension to penalty constraints. Changes to the element

implementation must be made, however, these modifications are relatively minor as they

are primarily related to changing the input parameters for the element, and the sizes of

some of the internal variables.

9.3.5 Alternative Configurations

One alternative mesh configuration is considered for the 3D model. This mesh, shown in

Figure 9.16, is identical to the base mesh for the site with the exception of the embankment

geometry. Instead of using the embankment geometry existing at the bridge site, the al-

ternative mesh considers an embankment that extends to the boundary of the model. This

wide embankment geometry is intended to simulate the assumptions made in a plane strain

treatment of the site, and is used to compare the foundation demands due to lateral spread-

ing to those resulting from the existing embankment geometry. The kinematic demands of

lateral spreading are simulated in the manner described previously, with a set displacement

profile imposed on the non-symmetry vertical boundaries of the mesh. Displacements are
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Figure 9.17: Mesh for bridge foundation strength reduction model.

not imposed on the side of the embankment across from the symmetry plane, and these

nodes are left free to displace in the loading direction.

For each embankment geometry, lateral spreading analyses are conducted for two deck

expansion gap values to test the sensitivity of the results to this parameter. According to

construction drawings of the bridge, a 20 cm expansion gap is built in to the connection of

the bridge deck and abutment. The two gap magnitudes considered in the applied kinematic

model are based on this value. The first gap, 5 cm, is chosen on the assumption that the

deck is moving towards the abutment due to lateral spreading on the opposite river bank as

observed in the plane strain models. The second gap, 25 cm, is based on the assumption that

the bridge deck may be moving slightly away from the abutment as lateral soil movement

affects the interior piers.

9.3.6 Strength Reduction Model

A second approach to simulating the kinematic demands of lateral spreading on the em-

bedded bridge foundation is considered to provide verification of the results obtained from

the applied kinematic model, and to aid in the identification of lateral load reduction mech-

anisms that may be obscured by the applied kinematic approach. In this second model,

instead of applying a set displacement profile to the model boundaries, the shear strength

and stiffness of the liquefiable layer are gradually reduced to nearly zero (G = 1.0 kPa

and Su = 0.05 kPa) over a series of analysis steps, with the model being allowed to reach

equilibrium for each new set of parameters before proceeding to the next state. Using this

approach, the effects of liquefaction in the saturated loose sand layer on the soil-foundation-

bridge system can be considered in a simplified manner. This new model is referred to as

the strength reduction model in all subsequent discussion in reference to the technique used

to simulate the kinematic demands of lateral spreading. Based on similar reasoning, the 3D

model discussed in the preceding sections is referred to as the applied kinematic model.

The strength reduction model is created with a slightly modified soil geometry to facil-

itate the alternative approach to simulating the kinematic demands associated with lateral
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Figure 9.18: Mesh for soil-only strength reduction model.

Figure 9.19: Mesh for embankment-only strength reduction model.

spreading. The mesh for this case, shown in Figure 9.17, considers soil layer boundaries

that slope down towards the river. The orientations of these sloped boundaries are defined

by extrapolating the slopes of the layers at the center of the foundation in the idealized

soil profile to the model boundaries. Two additional complementary meshes are considered

for the strength reduction model, one without an embankment, bridge, or foundation, Fig-

ure 9.18, and one with an embankment but no foundation or bridge deck, Figure 9.19. The

mesh extents and layer geometry of the native soils in both models, and the embankment

in the latter model, match those of the base bridge mesh of Figure 9.17.

In all three meshes, the soil nodes above the bottom of the liquefiable layer on the

boundary away from the river and the boundary opposite the symmetry plane are allowed

to translate towards the river, but are held fixed against translation is the opposite direction.

All other boundary conditions are as previously defined. Three global slopes are considered

for the strength reduction model. These slopes are simulated by applying gravitational body

forces consistent with 0◦, 2.5◦, and 5.0◦ rotations of the mesh. These rotated body forces are

applied only to the solid elements above the liquefied layer. The lower soil layers consider

vertical body forces as in the applied kinematic model. The non-zero global slopes are not

intended to simulate conditions at the site, but they are useful in that they encourage the

soil above the liquefiable layer to move towards the river, placing larger kinematic demands

on the embedded foundations, and allowing deformation mechanisms to be more clearly

identified.
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9.4 3D FEA of Southwest Abutment with Applied Kinematic Model

The applied kinematic model is used to examine the response of the southwest abutment and

approach embankment to the kinematic demands of lateral spreading, and to compare these

demands to those predicted by a plane strain description of the problem. To accomplish

this, two embankment geometries are considered: the embankment geometry existing at the

site shown in Figure 9.10, and a widened embankment geometry where the embankment fill

extends to the boundary of the mesh as shown in Figure 9.16. In addition to the these two

geometries, two expansion gap values are considered in order to assess the effect of the size

of the gap between the bridge deck and abutment on the response of the model. The results

of the lateral spreading simulations for each embankment geometry and expansion gap value

are compared to each other in terms of the global response of the soils and foundations, the

overall behavior of the abutment and foundation, and the displacement, shear force, and

bending moment demands developed in the shaft foundations.

9.4.1 Global Model Response

Figures 9.20 and 9.21 show the deformed mesh at the end of the analysis for the 5 cm and

25 cm gap applied kinematic models with the existing embankment geometry. The deformed

meshes are magnified 4 times for visualization, and contours of displacement magnitude

(units of cm) are plotted on each mesh. Figures 9.22 and 9.23 are the corresponding plots

for the wide embankment geometry. For all cases, the displacements in the direction of

loading are generally larger than those in other directions, and the deformation magnitude

contours shown in these figures are primarily influenced by this displacement component.

The deformation fields for these models show that with the existing embankment ge-

ometry, the bridge foundation provides more resistance to riverward deformation in the

immediately adjacent soil and affects a larger lateral expanse of soil. With the wide ge-

ometry, there is increased overburden stress at the lateral free-field boundary due to the

presence of the embankment. This increases the available shear strength and stiffness of the

soil in this location, leading to a larger kinematic demand on the foundation as the free-field

displacement is propagated closer to the bridge. This is manifested in the smaller lateral

zone of foundation influence for these cases, and in the larger deformations present below

the connection of the bridge deck to the abutment.

9.4.2 Abutment and Foundation Response

Figure 9.24 shows how the displacement at the top of the abutment changes over the course

of the free-field displacement application. Prior to gap closure for both gap magnitudes, the

abutment displacement in the wide geometry case is essentially equal to the free-field dis-

placement, indicating that the foundation is unable to provide significant resistance to the
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Figure 9.20: Deformed mesh (magnified 4 times) for existing geometry 5 cm gap applied
kinematic model with contours of displacement magnitude (in cm).
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Figure 9.21: Deformed mesh (magnified 4 times) for existing geometry 25 cm gap applied
kinematic model with contours of displacement magnitude (in cm).
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Figure 9.22: Deformed mesh (magnified 4 times) for wide geometry 5 cm gap applied
kinematic model with contours of displacement magnitude (in cm).
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Figure 9.23: Deformed mesh (magnified 4 times) for wide geometry 25 cm gap applied
kinematic model with contours of displacement magnitude (in cm).
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Figure 9.24: Evolution of abutment displacement in direction of loading for 5 cm and 25 cm
gap cases.

lateral soil deformation. In contrast, the abutment displacements for the existing embank-

ment geometry are less than the applied values, indicating that the foundation is resisting

the lateral soil demands. The difference between the free-field and abutment displacement

for this geometry increases with increasing free-field displacement. After the gap has closed,

the displacement at the top of the abutment remains essentially constant due to the resis-

tance provided by the bridge deck spring.

The deformation mechanism for the foundation changes after the closure of the gap.

Figures 9.25 and 9.26, which show the deformed shapes of the model foundations for the 5 cm

and 25 cm gap cases, respectively, demonstrate this difference in deformation mechanism.

After the gap has closed, the lateral deformation of the shaft cap continues to increase,

resulting in a rotation about the bridge deck connection point. This effect is most clearly

observed for the wide embankment geometry cases, though it is present in all considered

configurations. This type of rotational foundation response to lateral spreading corresponds

to observations made at numerous bridge sites, including the New Zealand bridges discussed

in Chapter 1, and demonstrates the importance of the bridge deck in defining the overall

foundation response. It also demonstrates the need for 3D (or 2D) simulation, as a simplified

analysis may not capture this effect.

The effects of approach embankment geometry are also evident from the deformed foun-

dations of Figures 9.25 and 9.26. Prior to gap closure, the foundation deformations for

each embankment geometry are similar, with the existing geometry inducing slightly less

lateral movement in the foundation. After the gap has closed, the differences in how the

embankment configuration affects the bridge foundation become apparent, as the end of

analysis foundation deformations for the widened embankment cases are significantly larger

than those for the corresponding existing geometry cases.
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Figure 9.25: Foundation deformations (magnified 15 times) at gap closure and analysis end
for 5 cm gap models.
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Figure 9.26: Foundation deformations (magnified 15 times) at gap closure and analysis end
for 25 cm gap models.
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Figure 9.27: Numbering and color scheme used for foundation shafts.

9.4.3 Foundation Bending Demands

The shaft bending demands developed in the applied kinematic model vary for each of

the four shafts in the foundation, especially at larger displacements. To aid in identifying

these shafts in the subsequent discussion, Figure 9.27 establishes a numbering and color

coding scheme for the shaft group. The shaft displacement profiles, shear force diagrams,

and bending moment diagrams at the closure of the 5 cm and 25 cm gaps are shown in

Figures 9.28 and 9.29. These plots demonstrate that prior to gap closure, the foundation

demands for the existing and wide embankment geometries are nearly the same, though it

is important to note that, as shown in Figure 9.24, gap closure occurs at different levels of

free-field displacement for the two geometries.

Figures 9.30 and 9.31 show summaries of the shaft bending demands at the end of the

analysis (i.e., 1 m free-field displacement in upper layers) for the 5 cm and 25 cm gaps,

respectively. These plots demonstrate the importance of the bridge deck resistance in defin-

ing the magnitude of the shaft bending demands due to lateral spreading, especially with

respect to three-dimensional effects. For the existing embankment geometry, the bending

demands at the end of the analysis are only slightly larger than at gap closure. This indi-

cates that the lateral resistance provided by the grouped shaft foundation and bridge deck

is sufficient to resist the kinematic demands imposed by the soil given the limited footprint

of the approach embankment. In contrast, for the wide embankment geometry the founda-

tion rotates about the essentially horizontally stationary deck connection as the free-field

displacements increase past the gap closure point. As shown in Figures 9.30 and 9.31 this

results in significantly larger shear and moment demands in the shafts.

The change in the foundation deformation mode after the gap has closed also results in

a change in the individual shaft response within the group. Whereas initially all four shafts
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Figure 9.28: Shaft bending demands for existing and wide embankment geometries at closure
of 5 cm gap.

responded similarly, after gap closure two distinct responses appear, with shafts 2 and 3

sharing one response, and shafts 1 and 4 sharing the other. The leading shafts (2 and 3)

display larger displacements with depth than the trailing shafts (1 and 4), resulting larger

shear force demands in the lower soil layers and slightly lower moment demands overall. In

both cases, the outer shafts (3 and 4) develop somewhat larger shear and moment demands

than the inner shafts (1 and 2), with shaft 4 typically displaying the largest bending demands

of the four shafts.

To further examine the difference between the bending demands for the two embankment

geometries, the progressions of maximum shear force and bending moment above (or within)
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Figure 9.29: Shaft bending demands for existing and wide embankment geometries at closure
of 25 cm gap.

and below the liquefied layer are shown in Figures 9.32 through 9.35 for the 5 cm gap, and

in Figures 9.36 through 9.39 for the 25 cm gap. These plots confirm and clarify several

observations made from the previously discussed bending demand summary plots. For

the existing geometry, the maximum bending demands level off after the gap has closed,

reaching ultimate values that are not significantly larger than those at the closure of the

gap. For the wide embankment geometry, the maximum shear and moment demands do

not level off after gap closure. These demands continue to increase with increasing free-

field displacement, though at a lesser rate of increase than in the pre-closure regime. The

group effects noted in Figures 9.30 and 9.31 are also apparent in these maximum demand
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Figure 9.30: Shaft bending demands for existing and wide embankment geometries at anal-
ysis end for 5 cm gap.

evolution plots, and as clearly indicated in Figures 9.36, 9.38, and 9.39, the group effects

are manifested prior to gap closure in certain cases.

9.4.4 Summary of Applied Kinematic Model Results

The results obtained from the various configurations of the applied kinematic model have

established that there is a tangible difference in the foundation response depending on the

geometry of the approach embankment. The soil deformation near the foundation, the

general foundation response, and the shaft bending demands are all significantly larger for

the wide embankment case, especially after the closure of the deck expansion gap. This

indicates that consideration for the 3D geometry of the embankment is critical in order to

determine appropriate structural foundation demands for the lateral spreading load case.
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Figure 9.31: Shaft bending demands for existing and wide embankment geometries at anal-
ysis end for 25 cm gap.

These results also highlight the importance of the bridge deck and expansion gap in

defining the response of the foundation to lateral spreading. Prior to expansion gap closure,

the differences between the two geometries are less significant, as the lateral soil movement

imposes nearly matching movement in the foundation. After expansion gap closure, the

three-dimensional effects become more prominent. The addition of the lateral deck stiff-

ness to the bending stiffness of the foundation is sufficient to resist most of the remaining

kinematic demands for the existing embankment geometry, leading to relatively minor in-

creases in the structural foundation demands as the free-field displacement continues past

the closure of the gap. This is not the case for the simulated 2D conditions of the wide

embankment geometry, as significant foundation demands develop after gap closure.
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Figure 9.32: Evolution of maximum shear force above the liquefiable layer for existing and
wide embankment geometries with 5 cm gap.
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Figure 9.33: Evolution of maximum moment above the liquefiable layer for existing and
wide embankment geometries with 5 cm gap.
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Figure 9.34: Evolution of maximum shear force below the liquefiable layer for existing and
wide embankment geometries with 5 cm gap.
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Figure 9.35: Evolution of maximum moment below the liquefiable layer for existing and
wide embankment geometries with 5 cm gap.
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Figure 9.36: Evolution of maximum shear force above the liquefiable layer for existing and
wide embankment geometries with 25 cm gap.
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Figure 9.37: Evolution of maximum moment above the liquefiable layer for existing and
wide embankment geometries with 25 cm gap.
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Figure 9.38: Evolution of maximum shear force below the liquefiable layer for existing and
wide embankment geometries with 25 cm gap.
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Figure 9.39: Evolution of maximum moment below the liquefiable layer for existing and
wide embankment geometries with 25 cm gap.
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9.5 3D FEA of Southwest Abutment with Strength Reduction Model

The strength reduction models are advantageous in that they allow for an evaluation of how

the system responds as the saturated loose sand layer loses shear strength and stiffness.

Consideration of the three model configurations (foundation and embankment, soil-only,

embankment-only) shown in Figures 9.17, 9.18, and 9.19 allows for an assessment of the

impact of the embankment and foundation on the response of the site. This set of models

also serves as an independent evaluation of the results of the applied kinematic model,

especially with respect to the foundation bending demands. The kinematic demands of

lateral spreading are simulated in a completely different manner for these models, and

correlation between the bending demands obtained from each approach increases confidence

in the observations and conclusions made from the models.

9.5.1 Global Model Response

Figures 9.40 and 9.41 show the deformed mesh at the end of the analysis for the bridge

foundation and embankment only model configurations with flat slope conditions. The

mesh deformations are magnified 25 times for visualization purposes, and displacement

magnitudes (units of cm) are indicated as contours with the same scale in each figure. A

similar figure for the soil-only case is not included here, as the deformations for the flat slope

condition are negligible in comparison. The results shown in Figures 9.40 and 9.41 reflect

the general trends indicated for all considered slopes. The loss of shear strength and stiffness

in the loose sand layer results in a tendency for the embankment to slump downward and

expand laterally in both directions as shown in Figure 9.41. With the bridge foundation

in place, the riverward deformation of the embankment is resisted, which results in less

overall slumping. The bridge foundation also reduces lateral deformation in the second

lateral direction in the adjacent embankment fill, however, the free-field lateral deformation

is much less affected.

Table 9.7 shows the maximum soil displacements in the x-, y-, and z-directions (umax,

vmax, and wmax, respectively) for each of the considered strength reduction model configu-

rations. For these models, the x-axis is oriented towards the river and corresponds with the

primary direction of the kinematic soil demands, the y-axis is oriented perpendicularly to

the symmetry plane, and the z-axis is oriented vertically. These maximum displacements

provide further evidence of how the presence of the embankment and bridge foundation

affect the overall deformation pattern for the site. Adding the approach embankment with-

out a foundation to restrain its deformation results in the largest deformations in all three

directions. The unbalanced loading applied by the embankment causes relatively large de-

formation out from the embankment centerline, and these deformations are only slightly

reduced by the presence of the foundation. Vertical slumping of the embankment is more
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Figure 9.40: Deformed mesh (magnified 25 times) for flat slope foundation strength reduc-
tion model with contours of displacement magnitude (in cm).
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Figure 9.41: Deformed mesh (magnified 25 times) for flat slope embankment-only strength
reduction model with contours of displacement magnitude (in cm).

significantly affected by the addition of the foundation, likely due to reductions in the de-

formations in both lateral directions. The most dramatic effect of the bridge foundation

on the site is in reducing the riverward displacements of the soil. As expected, the umax

values in the foundation model for each slope are smaller than the corresponding results

in the embankment model, but perhaps unexpectedly, these deformations are also smaller

than those for the native soil alone at the larger slopes.
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Table 9.7: Maximum soil displacements for three strength reduction model configurations
at each considered slope.

model type slope umax (cm) vmax (cm) wmax (cm)

0◦ 0.5 0.0 1.1

soil-only 2.5◦ 13.4 0.0 4.0

5◦ 23.2 0.0 5.0

0◦ 12.6 12.3 11.2

embankment 2.5◦ 22.2 13.1 16.9

5◦ 32.8 13.5 22.9

0◦ 4.4 12.0 9.5

foundation 2.5◦ 8.8 12.7 13.1

5◦ 13.6 13.1 16.8

The global model results for three strength reduction model configurations demonstrate

the importance of the bridge foundation in defining the overall lateral displacement of

the system, lending credence to the compatibility-based approach used in the pile pinning

analysis procedure. These models also show that the outward displacement of the soil

away from the bridge centerline is largely due to the approach embankment alone. The

slumping mechanism displayed by these models is a response that was observed at the Puente

Mataquito site, and appears to be due primarily to the overall settling of the embankment

as the liquefiable layer loses strength, though there is likely an additional component of loss

in embankment height due to material moving laterally. This vertical slumping is present in

the applied kinematic models, however, the magnitude is small in comparison to the lateral

deformations, and the compression of the embankment under the applied displacement

profile further obscures any slumping in that set of models.

9.5.2 Foundation Bending Demands

Figures 9.42, 9.43, and 9.44 show the shaft foundation displacement, shear force, and bend-

ing moment demands developed for the flat, 2.5◦, and 5◦ slope cases in the strength reduction

model. The bending demands shown in these plots are averaged across the four shafts to

get a single set of demands for each case that is representative of the whole. As expected,

the larger slopes lead to larger abutment displacements and correspondingly larger shear

and moment demands in the shaft foundations.

The bending demands at equivalent abutment displacements in the applied kinematic

model are provided in these plots to compare how the two approaches for modeling lat-

eral spreading affect the foundation response. The displacement profiles shown in Figures

9.42, 9.43, and 9.44 demonstrate the primary difference between the two approaches. In
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Figure 9.42: Average shaft bending demands for flat strength reduction model. Demands
at matching abutment displacement in applied kinematic model are shown for reference.
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Figure 9.43: Average shaft bending demands for 2.5◦ strength reduction model. Demands
at matching abutment displacement in applied kinematic model are shown for reference.

the strength reduction models, there is more of a rigid body rotation aspect to the shaft

deformation profile. This serves to lessen the shear force and bending moment demands

as compared to the applied kinematic model, even though the displacement at the top of

the abutment is the same in each case. However, the overall form of shear and moment

diagrams correspond between the two approaches, and the maximum demands are of the

same order of magnitude.
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Figure 9.44: Average shaft bending demands for 5◦ strength reduction model. Demands at
matching abutment displacement in applied kinematic model are shown for reference.

The evolution of the maximum shear force and bending moment demands in the shaft

foundations in the strength reduction model are compared to the corresponding demands

in the applied kinematic model in Figures 9.45 through 9.50. These plots reveal some

differences between the two lateral spreading modeling approaches that are obscured by

considering only the average shaft demands as in Figures 9.42 through 9.44. Group effects

are more prominent in the reduction model results, with shafts 2 and 3 on the leading row

carrying consistently larger maximum moment demands, and shafts 3 and 4 on the outside

of the group carrying larger shear force demands. The form of the maximum shear and

moment evolution for the flat case differs from that displayed by the applied kinematic

model, however, the difference is minor, and as the abutment displacement increases, the

overall similarity between the two data sets increases. Overall, the two modeling approaches

return very similar foundation demands for corresponding abutment displacements.

9.5.3 Summary of Strength Reduction Model Results

The results obtained from the strength reduction models have identified several significant

features related to how a bridge foundation responds to the kinematic demands of lateral

spreading, as well as how the presence of the foundation alters the global response of the

site. The foundation bending demands obtained from the strength reduction models are

essentially the same as those returned from the applied kinematic model at corresponding

abutment displacements. This provides increased confidence in the results and observations

obtained from the 3D modeling effort.
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Figure 9.45: Evolution of maximum shear forces for flat strength reduction model and
applied kinematic model at matching cap displacement.
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Figure 9.46: Evolution of maximum bending moments for flat strength reduction model and
applied kinematic model at matching cap displacement.



www.manaraa.com

196

0

1

2

3

 

 

pile 1
pile 2
pile 3
pile 4

0 1 2 3 4 5
0

1

2

3

free−field displacement (cm)

shaft 3
shaft 2

shaft 4

shaft 1
reduction model

kinematic model

sh
ea

r 
(M

N
)

shaft cap displacement (cm)

Figure 9.47: Evolution of maximum shear forces for 2.5◦ slope strength reduction model
and applied kinematic model at matching cap displacement.
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Figure 9.49: Evolution of maximum shear forces for 5◦ slope strength reduction model and
applied kinematic model at matching cap displacement.
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Figure 9.50: Evolution of maximum bending moments for 5◦ slope strength reduction model
and applied kinematic model at matching cap displacement.
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9.6 Comparison of 3D FE and Pile Pinning Analysis Approaches

The pile pinning model discussed in Section 9.2 and the applied kinematic version of the 3D

finite element model discussed in Section 9.4 represent two separate approaches to model

the effects of lateral spreading on the southwest abutment and grouped shaft foundation

for Puente Mataquito. The shaft foundation bending demands obtained from these two

modeling approaches are compared to each other in order to comment on their relative

similarities and differences, to demonstrate positive aspects of the pile pinning analysis

procedure, and to identify potential flaws or shortcomings of the simplified approach as

compared to the 3D model.

9.6.1 Comparison to 5 cm Gap Applied Kinematic Model

Figure 9.51 shows the average shaft bending demands at the closure of the 5 cm gap in the

existing and wide embankment geometry cases alongside the shaft bending demands deter-

mined from lateral spreading pushover analyses with the BNWF model for the minimum

and maximum compatible displacements (0.5 and 29.2 cm, respectively) resulting from all of

the cases considered in the pile pinning analysis (see Section 9.2.4). The shaded zones in this

plot are the shaft displacement, shear force, and bending moment demands bounded by the

minimum and maximum compatible states, and represent the range of demands suggested

by the pile pinning analysis. The demands for the mean (11.4 cm) compatible displace-

ment are shown for reference and labeled as 1Davg. Figure 9.52 shows a similar comparison

between the two analysis approaches, however, here the minimum, mean, and maximum

compatible displacements for those cases in which Fdeck 6= 0 (compatible displacements of

0.5, 7.5, and 17.2 cm, respectively) are used to determine the bending demands for the pile

pinning approach. Figures 9.53 and 9.54 are constructed similarly, however, the bending

demands from the 3D applied kinematic model are those at the end of the analysis when

the full 1 m free-field displacement profile has been applied.

The bending demands at the closure of the 5 cm gap in the 3D model fall within the

range of demands suggested by the pile pinning analysis, and as shown in Figure 9.52, these

demands are reasonably similar to the mean compatible displacement results from the cases

with Fdeck 6= 0. As previously discussed, and as shown in Figures 9.51 and 9.52, at the

closure of the gap, there is little difference between the foundations demands for the two

embankment geometries, and both sets of curves correspond reasonably well with the mean

pile pinning results. Neither of these observations apply to the end of analysis bending

demands shown in Figures 9.53 and 9.54, where the results for the wide embankment ge-

ometry fall outside the range of pile pinning demands for both data sets, while the existing

embankment geometry demands remain within the suggested ranges and retain their sim-

ilarity to the mean compatible state for the Fdeck 6= 0 cases. It is encouraging that the
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Figure 9.51: Average shaft bending demands at closure of 5 cm gap in applied kinematic
model with zone of bending demands suggested by all cases considered in pile pinning model.
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Figure 9.52: Average shaft bending demands at closure of 5 cm gap in applied kinematic
model with zone of bending demands suggested by Fdeck 6= 0 cases considered in pile pinning
model.
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Figure 9.53: Average shaft bending demands at analysis end with 5 cm gap in applied
kinematic model with zone of bending demands suggested by all cases considered in pile
pinning model.
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Figure 9.54: Average shaft bending demands at analysis end with 5 cm gap in applied
kinematic model with zone of bending demands suggested by Fdeck 6= 0 cases considered in
pile pinning model.
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bending demands at the end of the free-field displacement application for the wide embank-

ment geometry, which are similar to what would be expected from a 2D description of the

problem, do not correspond to the pile pinning results. This indicates that the pile pinning

analysis procedure is capable of estimating foundation bending demands that are consistent

with three-dimensional embankment geometry effects.

9.6.2 Comparison to 25 cm Gap Applied Kinematic Model

The pile pinning results do not compare as favorably to the 25 cm gap cases in the applied

kinematic model. Figures 9.55 and 9.56 show the bending demand comparisons at the clo-

sure of the gap, and Figures 9.57 and 9.58 show these comparisons at the end of the free-field

displacement application. At gap closure, the 3D bending demands are slightly larger than

those for the maximum considered compatible displacement (29.2 cm), and are well outside

of the range defined by the Fdeck 6= 0 cases. After gap closure, the existing embankment

geometry results remain essentially the same relative to the ranges obtained in the pile

pinning analysis, while the wide geometry demands become even larger in comparison.

The discrepancies between the two modeling approaches demonstrated in Figures 9.55

through 9.58 emphasize the importance of consideration for the presence of an expansion

gap when determining foundation demands developed during lateral spreading. The 25 cm

of displacement required to close the gap in the 3D models is larger than all but one of the

compatible displacements considered in this comparison, therefore, even the most conser-

vative estimate of foundation bending demands obtained from the pile pinning procedure

may be too small when the magnitude of the gap is relatively large. For bridges where the

foundation alone does not provide sufficient lateral resistance to embankment deformation,

it is likely that the expansion gap will be closed due to lateral movement of the foundation.

In this case, a better estimation of the foundation bending demands may be obtained by

considering the magnitude of the expansion gap in the compatible displacement used for

the final evaluation of the foundation.

A potential solution to this problem may be to consider Fdeck 6= 0 in the determination

of the compatible state, then simply add the gap magnitude to the estimated compatible

displacement and use the resulting displacement to determine the design foundation bend-

ing demands in the final BNWF analysis phase. Figures 9.59 and 9.60 demonstrate an

application of this approach to the Puente Mataquito foundation. These plots compare the

3D results at the closure of the gap and the end of the analysis, respectively, to the bending

demands resulting from adding 25 cm to the compatible displacements for the Fdeck 6= 0

cases. With this modification to the pile pinning analysis, the shear force and bending

demands moment for the 3D embankment geometry now compare more favorably to the

pile pinning demands. Figure 9.60 also shows that the structural demands resulting from

the wide embankment geometry in the 3D model remain larger than those predicted by the
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Figure 9.55: Average shaft bending demands at closure of 25 cm gap in applied kinematic
model with zone of bending demands suggested by all cases considered in pile pinning model.
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Figure 9.56: Average shaft bending demands at closure of 25 cm gap in applied kinematic
model with zone of bending demands suggested by Fdeck 6= 0 cases considered in pile pinning
model.
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Figure 9.57: Average shaft bending demands at analysis end with 25 cm gap in applied
kinematic model with zone of bending demands suggested by all cases considered in pile
pinning model.
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Figure 9.58: Average shaft bending demands analysis end with 25 cm gap in applied kine-
matic model with zone of bending demands suggested by Fdeck 6= 0 cases considered in pile
pinning model.
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Figure 9.59: Average shaft bending demands at closure of 25 cm gap in applied kinematic
model with zone of bending demands suggested by the sum of the compatible displacements
for the Fdeck 6= 0 cases with the gap magnitude.
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Figure 9.60: Average shaft bending demands analysis end with 25 cm gap in applied kine-
matic model with zone of bending demands suggested by the sum of the compatible dis-
placements for the Fdeck 6= 0 cases with the gap magnitude.
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modified pile pinning approach, though the difference is not as great as for the unmodified

pile pinning results and the smaller expansion gap.

The potential solution demonstrated here is rather simplistic, and further comparative

studies are required to determine if this is a viable solution for general use, however, it

appears to effectively introduce the effects of the 25 cm expansion gap into the pile pinning

analysis for the foundation and site geometry at Puente Mataquito. With further research,

the proposed solution of adding the gap distance to the compatible displacement value may

prove to be a successful approach for dealing with lateral spreading design of bridges with

larger expansion gaps.

9.7 Summary

The response of the southwest abutment at Puente Mataquito to lateral spreading was

evaluated using two analysis approaches: simplified pile pinning analyses in which the foun-

dation is represented using a BNWF approach, and 3D finite element analyses that consider

the full geometry of the site. The results from these analyses were used to gain insights into

the mechanisms that govern the response of abutment and foundation during the kinematic

loading of lateral spreading.

The 3D FEA for the abutment demonstrated that there is a tangible difference in the

foundation demands and soil deformation due to consideration of the three-dimensional

embankment geometry. These analyses identified important mechanisms leading to this

reduction in demands. During the simulated lateral spreading events, rather than pushing

directly into the abutment and foundation, the embankment slumps vertically and deforms

in the outward lateral direction, thus reducing the foundation demands. The pinning resis-

tance of the foundation was also demonstrated using 3D models that considered gradual loss

of shear strength and stiffness in the liquefied layer. The 3D modeling effort also showed

how the presence of a bridge deck expansion gap affects the response of the system and the

foundation, and identified the importance of the lateral resistance of the bridge deck on the

response of the site during lateral spreading.

The pile pinning analysis for the abutment was used to demonstrate that the application

of this approach to an actual problem is not quite as simple as it may seem from a theoretical

viewpoint, as seemingly minor changes in modeling choices, e.g., the chosen method of slope

stability analysis, resulted in different compatible solutions. To overcome the observed

variability in the compatible displacements predicted by this procedure, an approach is

proposed in which the final design displacement is obtained as an average value from an array

of compatible states computed using different assumptions. This proposed method requires

many individual analyses for the design of a single foundation, however, the pushover and

slope stability analyses involved in the pile pinning procedure are relatively inexpensive

in terms of time and computational resources. Through comparison to the results from
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3D FEA, it was shown that when applied carefully, the pile pinning procedure is able to

predict foundation bending demands that correspond to a three-dimensional description of

the problem, especially for smaller deck expansion gaps.

When performing the design of a bridge foundation using the pile pinning analysis pro-

cedure, it would be useful to have an independent prediction of how much pinning resistance

can be expected for a particular combination of foundation, soil profile, and embankment

geometry. The parameter study introduced in the following chapter addresses an approach

to estimating the expected difference between the foundation displacement, shear force,

and bending moment demands resulting from 2D and 3D descriptions of the problem. This

difference can be interpreted as an indication of the amount of lateral pinning resistance

available for a particular site.
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Chapter 10

3D PARAMETER STUDY OF GEOMETRIC EFFECTS ON

FOUNDATION RESPONSE TO LATERAL SPREADING

The 3D finite element models created and analyzed for Puente Mataquito have identi-

fied that the approach embankment geometry can greatly influence the response of a bridge

foundation to the kinematic demands of lateral spreading. Consideration for 3D embank-

ment geometry was shown to produce structural foundation demands that are reduced in

comparison to a two-dimensional description of the problem. The results obtained from

the Mataquito case study provide a useful evaluation of how these 3D effects are man-

ifested at that particular site, however, a general description of the problem cannot be

gained from a single combination of bridge foundation, embankment size, and soil profile.

In order to further analyze how the site geometry affects foundation response, a parameter

study is considered using a series of 3D finite element models with various combinations of

shaft diameter and site geometry. These models are simplified in comparison to the Puente

Mataquito models, however, the fundamental aspects of the approach embankment problem

are captured.

10.1 Parameter Study Model Overview

The parameter study models consider a single pile or shaft foundation embedded in a layered

soil profile with an embankment placed above the upper soil layer. This embankment is built

with a 2H:1V side slope and extends across the length of the mesh as shown in Figure 10.1.

Different combinations of embankment width, shaft diameter, liquefied layer depth, and

liquefied layer thickness are considered to characterize the influence of site geometry on the

response of the single shaft to lateral spreading.

10.1.1 Considered Site Geometries

Figure 10.2 shows a summary of the soil profiles and embankment geometries considered in

the parameter study. The soil profile is varied with respect to the liquefied layer thickness, t,

and the depth, z, to the top of the liquefied layer (dark blue layer in the plot). Three values

of each parameter are selected: t = 1.0, 2.0, 3.0 m and z = 1.0, 2.0, 3.0 m. For each of

these nine soil profiles, three embankment crest widths, w = 4.0, 8.0, 16.0 m, are considered

in addition to a fourth case in which the embankment extends across the full width of the

model (35.0 m). These full width cases are used to simulate a two-dimensional description
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Figure 10.1: Example 3D finite element mesh used in the parameter study.

of the problem, and are compared to the other embankment configurations in order to assess

the reduction in foundation bending demands relative to the plane strain case. Models are

generated for each of the 36 site geometric configurations with consideration of two shaft

foundation designs, leading to 72 distinct cases in the parameter study. Two shaft diameters

are considered, D = 0.6, 1.4 m, to assess the effects of foundation size, and each shaft is

based on a separate template cross-section design to assess the effects of foundation bending

stiffness on the response of the system.

10.1.2 Boundary and Loading Conditions

The boundary and loading conditions for the parameter study models are similar to those

used in the applied kinematic model for Puente Mataquito. The nodes on the base of the

mesh are fixed against vertical translation, and elemental body forces are used to consider

the effects of gravity on the soil continuum. Symmetry is considered as shown in Figure 10.1,

with the symmetry plane cutting through the center of the shaft foundation such that only

one half of the shaft is considered in the model. The nodes on the vertical boundary op-

posite the symmetry plane are fixed against all horizontal translation, and the nodes on

the remaining non-symmetry vertical boundaries are fixed against out-of-plane translations

only. The effects of lateral spreading are simulated using the applied kinematic approach

introduced in the discussion of the Puente Mataquito modeling effort, in which a set dis-
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Figure 10.2: Summary of cases considered in the parameter study.

placement profile is gradually applied to the non-symmetry vertical boundaries of the mesh.

This displacement profile is constant above the assumed liquefied layer, linearly-increasing

across the liquefied layer, and zero below this point. The soil mesh boundaries are placed

35 m away from the shaft centerline in both horizontal directions, and the mesh is 20 m

deep vertically with a 5 m tall embankment for all configurations.

The shaft foundation is modeled with a displacement-based beam-column element that

interfaces with the surrounding solid elements via the beam-solid contact elements of Petek

(2006). A detail of the mesh immediately surrounding the shaft centerline is provided in

Figure 10.1. As shown, a semi-circular space is built-in to the solid element mesh to consider

the physical size of the shafts considered in the study. The nodes for the beam-column

elements are fixed against translation normal to the symmetry plane, and rotations about

the direction of loading and the axis of the shaft. The beam node at the base of the model

is fixed against vertical translation, and the beam node at the top of the model is fixed

against rotations in the plane of loading to represent a rigid connection to a hypothetical

shaft cap or superstructure body.
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Table 10.1: Model properties for soil layers in parameter study.

Layer ρ (Mg/m3) φ (◦) Gmax (MPa) Kmax (MPa) Su (kPa)

dry loose sand 1.7 32 75 200 –

sat. loose sand 1.7 – 6.0 175 5.0

dense sand 2.0 38 100 300 –

embankment fill 1.9 48 130 390 –

Table 10.2: Model material and section properties in parameter study shaft foundations.

Shaft diameter A (m2) E (GPa) G (GPa) I (m4)

0.6 m 0.15 31.3 12.5 0.0038

1.4 m 0.74 28.7 11.5 0.0869

10.1.3 Soil Properties

Generic soil properties are assumed for the various soil layers in the model. Four layers

are defined: the embankment fill, a dry crustal sand layer, a liquefiable saturated loose

sand layer, and an underlying denser sand layer. The constitutive models of Elgamal et al.

(2003) discussed in Section 7.1 are used to model the material response of all considered

soils. The embankment fill, crust, and dense sand layers are modeled with Drucker-Prager

type failure surfaces with friction angle dependent strengths, while the liquefied loose sand

layer is modeled as a pressure independent material with a residual undrained shear strength

defining the bounds of the failure surface. As with the applied kinematic model for Puente

Mataquito, the liquefied layer is assigned residual shear strength and stiffness properties at

the beginning of the analysis, as it is assumed that liquefaction has already occurred.

10.1.4 Shaft Foundation Models

Two template shaft models are used in the parameter study, a 0.6 m diameter shaft and

a 1.4 m diameter shaft. These shaft models are based on actual deep foundation designs,

and consider linear elastic bending stiffness values determined from the initial tangent of

the nonlinear moment curvature responses of the template cross-sections. The material and

section properties used to define the shaft models are provided in Table 10.2. For each

shaft, the cross-sectional area, A, and second moment of the area, I, are determined based

on half of the shaft cross-section for consistency with the symmetry conditions assumed in

the model. The shaft elastic modulus values are chosen such that the linear elastic bending

stiffness, EI, corresponds to the initial bending stiffness of the template cross-sections, and

the elastic shear modulus, G, for each shaft is based on an assumed Poisson’s ratio of 0.25.

Further details on the template cross-section designs used to define these shaft models are

discussed in McGann et al. (2012).
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10.2 General Effects of Site Geometry on Foundation Response

The effects of approach embankment and soil profile geometry on the flexural response of the

shaft foundations are assessed through comparisons of the results obtained from the various

cases considered in the parameter study. These comparisons are made both qualitatively and

quantitatively, and the discussion of the observed effects is organized into several sections

in order to isolate the individual effects of each considered geometric aspect.

10.2.1 Summary of Global Model Response

In general, the results of the parameter study demonstrate that the presence of the shaft

foundation alters the soil deformation field such that only the material near the boundaries

experiences the full free-field displacement applied to the model. This resistance varies de-

pending on the geometric configuration of the site, as certain combinations lead to greater

and more widespread resistance, while others indicate a less significant effect. To demon-

strate the range of responses obtained, Figures 10.3 and 10.4 show the deformed mesh for

two models in which the only difference is the embankment width. The soil profiles shown

in these plots consider a 0.6 m diameter shaft with a 3 m thick liquefied layer located 1 m

below the base of the embankment fill.

The mesh shown in Figure 10.3 considers an embankment defined with w = 8 m. In this

case, the shaft provides substantial resistance to the lateral deformation of the soil, as the

deformations near the shaft are approximately one-quarter of the free-field displacement,

and this effect is manifested over a fairly large portion of the soil domain. In contrast,

Figure 10.4, which shows the same results for the full width embankment, demonstrates that

with the 2D geometry, the shaft offers only minimal lateral resistance as nearly the entire

soil domain experiences the free-field deformation profile. This general trend of increased

embankment width leading to a more homogeneous soil deformation field corresponds to

observations made using the Puente Mataquito models.

10.2.2 Effects of Embankment Crest Width

The general effects of increasing embankment width are demonstrated through a comparison

of Figures 10.3 and 10.4, however, it is also of interest to assess the differences in how the

three considered embankment crest widths affect the embedded shaft foundations. The

effects of the different embankment sizes on the foundation demands are demonstrated in

Figures 10.5 through 10.10, which show the shaft bending demand profiles (displacement,

shear force, and bending moment) for the indicated parameter combinations. In these plots,

w1 through w4 correspond to the four embankment crest widths ordered from low to high

(4, 8, 16, and 35 m, respectively), and the liquefied layer thickness is indicated by the extents

of the gray shaded zones. Each individual figure considers the combination of liquefied layer
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Figure 10.3: Deformed mesh (magnified 4 times) with contours of horizontal deformation
for w = 8 m case with D = 0.6 m, z = 1 m, and t = 3 m.
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Figure 10.4: Deformed mesh (magnified 4 times) with contours of horizontal deformation
for full width case with D = 0.6 m, z = 1 m, and t = 3 m.
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depth, z, and shaft diameter, D, noted in its caption, and the portion of the soil profile

corresponding to the approach embankment is shaded in brown for reference.

As expected based on the Puente Mataquito results and the soil deformation fields

of Figures 10.3 and 10.4, increased embankment width leads to increased shaft bending

demands. This is most clearly seen in Figures 10.5 and 10.6, which consider the shallowest

liquefied layer depth, though it can been seen to some extent in all of the bending demand

summary plots. The general forms of the displacement, shear force, and bending moment

profiles remain similar for the four widths, however, the magnitudes become larger, and, in

general, for constant D, z, and t, the locations of the shear and moment inflection points

move further apart as the embankment becomes wider.

Figures 10.11 through 10.16 support some of these observations by showing how the

maximum displacement, shear force, and bending moment demands change with increasing

free-field displacement for each considered combination of shaft design and soil configuration.

As shown, perhaps with the exception of the first few analysis steps, for all levels of free-field

displacement, larger embankment widths lead to larger maximum bending demands. The

maximum displacement, shear, and moment demands are affected similarly by changes in

w, and it appears that for constant values of D, z, and t, the relative difference between

the results for each embankment width remains nearly constant over the course of the

free-field displacement application. In all cases, the bending demands obtained from the

wide embankment geometry are greater than or equal to the bending demands for the 3D

embankment geometries.

10.2.3 Effects of Liquefied Layer Depth

The depth of the liquefied layer plays an important role in defining how changes in em-

bankment crest width affect the embedded foundation during lateral spreading. For the

cases with shallow liquefied layers, the width of the embankment is very influential to the

shaft response. As shown in Figures 10.5 and 10.11 for the 0.6 m shaft, and Figures 10.6

and 10.14 for the 1.4 m shaft, there are significant differences in the shaft bending demand

profiles and in the maximum bending demands for the four considered crest widths. As the

depth to the liquefied layer is increased, the differences between the shaft bending demands

resulting from the four widths become less significant. With z = 3 m (e.g., Figures 10.7

and 10.12), there is less variation in the shaft demands for increasing values of w than for

the corresponding cases with z = 1. With z = 6 m (e.g., Figures 10.9 and 10.13), there is

almost no difference in the demands manifested by the four crest widths.

These observations suggest that for these single shaft cases, there is a limiting liquefied

layer depth at which the 3D embankment effects are no longer a significant factor in defining

the structural demands in the foundation. When the liquefied layer is relatively shallow, the

approach embankment is the primary source of kinematic demands on the shaft foundation
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Figure 10.11: Maximum shaft bending demands for three liquefied layer thicknesses and
four embankment widths with D = 0.6 m and z = 1 m.
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Figure 10.12: Maximum shaft bending demands for three liquefied layer thicknesses and
four embankment widths with D = 0.6 m and z = 3 m.
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Figure 10.13: Maximum shaft bending demands for three liquefied layer thicknesses and
four embankment widths with D = 0.6 m and z = 6 m.
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Figure 10.14: Maximum shaft bending demands for three liquefied layer thicknesses and
four embankment widths with D = 1.4 m and z = 1 m.
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Figure 10.15: Maximum shaft bending demands for three liquefied layer thicknesses and
four embankment widths with D = 1.4 m and z = 3 m.



www.manaraa.com

222

0

50

100

sh
af

t d
is

p 
(c

m
)

0

5

10

sh
ea

r 
(M

N
)

0 20 40 60 80 100
0

10

20

30

free−field displacement (cm)

m
om

en
t (

M
N

m
)

 

 

w1
w2
w3
w4

0

50

100

sh
af

t d
is

p 
(c

m
)

0

5

10

sh
ea

r 
(M

N
)

0 20 40 60 80 100
0

10

20

30

free−field displacement (cm)

m
om

en
t (

M
N

m
)

 

 

w1
w2
w3
w4

0

50

100

sh
af

t d
is

p 
(c

m
)

0
2
4
6
8

sh
ea

r 
(M

N
)

0 20 40 60 80 100
0

10

20

30

free−field displacement (cm)

m
om

en
t (

M
N

m
)

 

 

w1
w2
w3
w4

3 m thickness

1 m thickness

6 m thickness

Figure 10.16: Maximum shaft bending demands for three liquefied layer thicknesses and
four embankment widths with D = 1.4 m and z = 6 m.
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during lateral spreading, and thus, differences in the geometry of the embankment are very

influential on the foundation response. As the amount of crustal soil is increased, a greater

amount of soil below the embankment is mobilized during the simulated lateral spreading

event, and the kinematic demands placed on the foundation by the lateral movement of this

crustal layer begins to control the overall shaft response.

10.2.4 Effects of Liquefied Layer Thickness

The effects of liquefied layer thickness are more subtle than those observed for the embank-

ment crest width and liquefied layer depth. Based on the results shown in Figures 10.5

through 10.16, it does not appear that there is a clear trend that holds for all cases demon-

strated by changes in t, however, there are differences in how the foundation is affected for

the considered liquefied layer thickness values. One effect of the liquefied layer thickness is

manifested in the foundation shear force diagrams. As shown in Figures 10.5 and 10.6, for

the same values of D, w, and z, thinner liquefied layers lead to larger shear force demands.

This is primarily due to how the applied displacement profile changes for thinner layers.

As the thickness of the liquefied layer decreases, the shear demands on the shaft should

approach the maximum possible value that would result in the absence of the linearly-

distributed portion of the displacement profile. In contrast, the bending moment demands

are much less affected by changes in t, though the distance between the maximum moment

demands naturally increases with liquefied layer thickness.

The thickness of the liquefied layer also appears to affect how the embankment width

influences the foundation response, and these effects show a depth dependence. As shown

in Figures 10.11 and 10.14, the relative differences between the maximum bending demands

for the four crest widths are not uniform for the three thicknesses considered. With t = 1 m,

there is less variation with width than for the 3 and 6 m layer thicknesses. For deeper layer

configurations, e.g., Figures 10.12 and 10.15, this effect is not as apparent and there is more

consistency in the relative demands for the four widths at each thickness value.

10.2.5 Effects of Shaft Bending Stiffness

Some of the differences observed for the two shaft designs are expected effects of the two

bending stiffness values represented by the shafts. The smaller shaft has a lower bending

stiffness in comparison to the soil stiffness (EI0.6 = 119 MN·m2 compared to EI1.4 =

2494 MN·m2), therefore, for corresponding soil profiles the displacements of the 0.6 m shaft

are larger and more closely resemble the applied displacement profile, while the larger shaft

design offers more resistance to the lateral soil deformation. Since the larger shaft has a

larger stiffness, for similar levels of shaft displacement, the shear and moment demands in

the 1.4 m shaft are much larger than those in the 0.6 m shaft.
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The liquefied layer depth effects discussed in the preceding sections appear to change

based on the shaft bending stiffness. A comparison of Figures 10.12 and 10.15 demonstrates

this effect; with z = 3 m, there is more variation with width in the maximum bending

demands for the 1.4 m shaft than for the 0.6 m shaft. This observation also holds for

the z = 6 m cases of Figures 10.13 and 10.16, as there is almost no variation with w for

the 0.6 m shaft design, while the larger shaft still shows some visible differences for the

considered crest widths. The implications of these observations make sense in the context

of the problem, as it seems natural that the amount of crustal soil necessary to negate the

three-dimensional effects of the embankment on the foundation response depends on the

stiffness of the foundation itself.

10.3 Characterization of Geometric Site Effects

The basic observations made in the previous discussion demonstrate that geometric site ef-

fects during lateral spreading are not exclusive to the approach embankment. The amount of

lateral pinning resistance that can be expected from a given foundation is not only dependent

on the width of the embankment, but on the arrangement of the soil profile and stiffness of

the foundation as well. The simplified pile pinning analysis approach discussed throughout

this work likely captures the depth and thickness effects in the slope stability/deformation

phase. A deeper liquefied layer results in a larger failure mass and correspondingly larger

resisting forces required to contain the failure. This shifts the compatible design displace-

ment to the right, indicating that there is less available foundation resistance for the system.

The foundation stiffness effects should be captured by altering the pushover curve obtained

from the foundation model. Therefore, while it is likely that the geometric effects observed

in the parameter study are captured in the pile pinning analysis approach, an independent

prediction of the expected amount of lateral pinning resistance for a given foundation and

site geometry represents a useful supplementary design tool.

In order to characterize the expected amount of lateral resistance for a particular case,

the problem is framed in terms of a reduction in foundation bending demands from those

returned by the pseudo plane strain geometry of the full width embankment cases. These

reductions are characterized in terms of a reduction ratio computed by dividing the displace-

ment, shear force, and bending moment demands at each analysis step by the corresponding

demands for the wide embankment case with matching soil profile and shaft design. Figures

10.17 through 10.22 show these computed ratios plotted against the free-field displacement

in the model. In these plots, a reduction ratio of 1.0 implies no reduction from the plane

strain case, while a reduction ratio less than 1.0 indicates that the bending demands are less

than those in the plane strain case. For example, a reduction ratio of 0.2 indicates bending

demands that are 20% of those predicted using a two-dimensional description of the site

geometry.
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Figure 10.17: Bending demand ratios for three liquefied layer thicknesses and three em-
bankment widths with D = 0.6 m and z = 1 m.
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Figure 10.18: Bending demand ratios for three liquefied layer thicknesses and three em-
bankment widths with D = 0.6 m and z = 3 m.
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Figure 10.19: Bending demand ratios for three liquefied layer thicknesses and three em-
bankment widths with D = 0.6 m and z = 6 m.
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Figure 10.20: Bending demand ratios for three liquefied layer thicknesses and three em-
bankment widths with D = 1.4 m and z = 1 m.
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Figure 10.21: Bending demand ratios for three liquefied layer thicknesses and three em-
bankment widths with D = 1.4 m and z = 3 m.
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Figure 10.22: Bending demand ratios for three liquefied layer thicknesses and three em-
bankment widths with D = 1.4 m and z = 6 m.
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The reduction ratio plots of Figures 10.17 through 10.22 support the observations made

in the previous sections, while providing a better representation of how the bending demands

relate to each other over the full span of the free-field displacement, and thus illuminating

aspects of the geometric site effects that are obscured in previous plots. Most of the site

configurations display a similar trend in how the reduction ratios develop; the ratios are

lower over the initial portion of the free-field displacement, and then gradually increase

before reaching an essentially steady final value. There are some exceptions to this general

trend, particularly for the z = 1 m configurations with t > 1 m, which, as shown in

Figures 10.17 and 10.20, display the opposite ratio development pattern, with initially

higher ratios becoming smaller with increasing free-field displacement and, for the 0.6 m

diameter shaft cases, the reduction ratios do not all reach a steady value prior to the end

of the analysis. The other exceptions to the general trend of reduction ratio evolution are

displayed for the z = 3 m cases shown in Figures 10.18 and 10.21. Here, the ratios initially

become smaller before they begin to gradually increase to their steady-state values. It is not

yet clear whether this is a relevant effect due to these geometric conditions or a numerical

effect due to differences in the model between the initial state and the loading state.

10.3.1 Reduction Model

The residual reduction ratio values (i.e., those at the end of the free-field displacement),

are used to establish a means to predict expected reductions in shaft displacement, shear

force, and bending moment demands for a given site geometry. By plotting the residual

reduction ratios, R, against various combinations of liquefied layer depth, z, liquefied layer

thickness, t, embankment width, w, and foundation bending stiffness, EI, in a natural-

log plot, dimensionless relations are established that relate the reduction ratio to the site

parameters. For this purpose, the tributary width introduced by Boulanger et al. (2006)

w = wc +
2

m
h (10.1)

where wc is the crest width, m is the embankment side slope, and h is the embankment

height, is used to describe the width of the embankment. The parameter study models all

consider a 2H:1V side slope and a 5 m height, thus, the tributary widths are simply the sum

of the crest widths and the height. This consideration results in a modified set of widths,

w = 9, 13, 21 m.

Other than the unit weight of the crustal soil layer, γ, considered to provide a set of force

units to offset those in EI, soil properties are not considered when constructing the relations

between the reduction ratio and site parameters. All of the parameter study models consider

the same set of soil properties, and since the problem has been framed in terms of reduction

ratios for shaft bending demands, any effects related to the strength and stiffness of the soil

should cancel out when the ratios between the various cases are computed.
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Figure 10.23: Dimensionless relationship between reduction ratio, R, and maximum shaft
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The relations for which the data displayed the best correlation in the natural-log plots

define two dimensionless parameters: the dimensionless reduction ratio,

η =
γ2z6t7

(EI)2w3
R (10.2)

and the dimensionless site parameter,

β =
γz3t3

EIw
(10.3)

These dimensionless parameters are computed for the 54 sets of residual reduction ratios for

the maximum shaft displacement, maximum shaft shear force, and maximum shaft bending

moment demands shown in Figures 10.17 through 10.22, as well as an additional 72 residual

reduction ratios computed as the ratio of the shaft head displacement in each case to the

applied free-field displacement.

Figures 10.23 through 10.26 show the relations between the dimensionless reduction

ratio and site parameters for each of these four cases. As shown, the data points for each

reduction ratio type display a strong linear trend when plotted using the dimensionless

parameters, β and η. Lines are fit to the data using least squares in order to establish

expressions for the observed trends. A straight line in natural-log space represents

ln η = b ln β + ln a (10.4)

where the coefficients a and b are determined from the linear least squares procedure for
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Figure 10.24: Dimensionless relationship between reduction ratio, R, and maximum shaft
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Figure 10.26: Dimensionless relationship between reduction ratio, R, and free-field displace-
ment.

the reduction ratios. Solving this expression for η gives

η = aβb (10.5)

which, when combined with (10.2) and (10.3) defines the following expression for the reduc-

tion ratio in terms of the site parameters and the least squares coefficients

R = aw3−bγb−2z3b−6t3b−7(EI)2−b ≤ 1.0 (10.6)

A reduction ratio greater than 1.0 implies an increase in the shaft bending demands as

compared to 2D conditions, therefore, the expression is defined such that R ≤ 1.0 to ensure

that such values are not considered.

As shown in Figures 10.23 through 10.26, the dimensionless reduction ratio relationships

for each of the four considered cases display nearly identical trends. This appears reasonable

based on the reduction ratios plotted in Figures 10.17 through 10.22, which display little

difference in the residual values for each maximum bending demand. As expected based on

the observed similarity between the four reduction ratio types, the least squares coefficients

computed for each case and shown in Table 10.3 are all nearly the same. Due to this

similarity between the reduction ratio types, it is proposed that a single reduction ratio

model that uses average least squares coefficients can be applied to determine reductions

in any of the considered quantities without resulting in significant error. The a- and b-

coefficients computed for the maximum shaft displacement reduction ratio are used to define



www.manaraa.com

235

Table 10.3: Least squares coefficients for each reduction ratio type.

Reduction ratio type a b

max shaft displacement 0.63 2.22

max shear force 0.60 2.21

max bending moment 0.60 2.21

free-field displacement 0.68 2.22

this master model, which can now be expressed as

R = 0.63
w0.8γ0.2z0.6

(EI)0.2 t0.4
≤ 1.0 (10.7)

By multiplying the value of R computed from (10.7) with the maximum bending de-

mands obtained from a simplified analysis of a bridge foundation, e.g., the initial BNWF

pushover phase of the pile pinning analysis procedure, a designer can obtain a first-order

approximation of the foundation bending demands with consideration for the 3D geometry

of a given site. Alternatively, given a particular set of site parameters, the reduction ratio

can be applied to the free-field lateral spreading displacement value estimated using a pre-

dictive method (e.g., Baska, 2002; Youd et al., 2002; Idriss and Boulanger, 2008) in order

to estimate the expected shaft cap displacement at the site. The scope of the current data

set used to establish this reduction model is not sufficiently large and diverse as to suggest

that the reductions predicted by its application are definitive results, however, this reduc-

tion model can be an effective tool if used in support of an independent analysis, with the

reductions computed from (10.7) serving as an estimate of the amount of lateral resistance

a foundation may provide during lateral spreading.

10.3.2 Effects of Site Parameters on Reduction Model

It is of interest to evaluate the effects of each of the four primary site parameters on the re-

duction ratio estimated from (10.7). These observations overlap somewhat with those made

previously, but evaluating the effects of these parameters in the context of the reduction

ratio allows for them to be isolated further. In order to make these evaluations, a generic

site profile is assumed where EI = 10 MN·m, t = 4 m, z = 2 m, γ = 17 kN/m2, and

w = 10 m. In the discussion that follows, unless otherwise stated, these parameters apply

to the results shown.

Figure 10.27 shows how the reduction ratio varies with foundation bending stiffness,

and also demonstrates how the relationship between R and EI is affected by changes in the

other site parameters. These plots generally show the expected effects of foundation bending

stiffness on the reduction ratio. As EI is increased, R becomes smaller, implying a greater
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Figure 10.27: Variation of reduction ratio, R, with shaft bending stiffness, EI, and effects
of changing t, z, and w on this relationship.

reduction from the plane strain case. As the depth to the liquefied layer or the embankment

width are increased, larger values of EI are required to affect a similar reduction in the

system. The inverse relation holds for changes in liquefied layer thickness, as larger values

of t decrease the amount of foundation stiffness required to achieve a particular reduction.

Additionally, these plots show that for the assumed generic site parameters, the thickness

of the liquefied layer is less influential on the R-EI relationship than the other parameters.

To assess the effects of liquefied layer thickness on the computed reduction ratio, the

relations between t and R are similarly plotted in Figure 10.27. Because t and EI are
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Figure 10.28: Variation of reduction ratio, R, with liquefied layer thickness, t, and effects
of changing EI, z, and w on this relationship.

both located in the denominator of (10.7), they share a similar overall trend in relation

to R, and in how the other parameters influence this relation. Increases in embankment

width and liquefied layer depth necessitate a larger liquefied layer thickness to maintain

a steady reduction ratio, while increasing the foundation bending stiffness decreases the

thickness necessary to maintain a certain level of reduction. The amount of influence of the

non-thickness site parameters on the R-t relation appears to be similar based on the spread

between the individual curves in the plots of Figure 10.27.
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Figure 10.29: Variation of reduction ratio, R, with liquefied layer depth, z, and effects of
changing t, EI, and w on this relationship.

The relations between the reduction ratio and the liquefied layer depth and embank-

ment width shown in Figures 10.29 and 10.30 confirm the previously observed effects of

these parameters on the amount of lateral foundation resistance available for a given site

configuration. Decreasing either of these parameters leads to larger reductions in founda-

tion demands as compared to the 2D site description, and this is manifested in the plots as

smaller reduction ratios for smaller values of z and w. Increasing either the liquefied layer

thickness or foundation stiffness increases the amount of crustal soil which can be present in

the soil profile before the reduction becomes negligible, with EI demonstrating the greater
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Figure 10.30: Variation of reduction ratio, R, with embankment tributary width, w, and
effects of changing t, z, and EI on this relationship.

amount of influence on this effect. Increases in t and EI affect the embankment width

similarly, demonstrating that as these parameters become larger, the embankment width at

which 3D effects become insignificant also becomes larger. The influence of w on the depth

effect and z on the width effect are also evident in these results, with Figures 10.29 and 10.30

demonstrating that larger embankment widths require shallower liquefied layers to affect a

similar level of reduction in the foundation demands. These observations correspond with

those made qualitatively from previous plots, lending confidence to the final form of the

reduction ratio model.
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10.4 Summary

A series of 3D finite element models was used to examine the influence of various site pa-

rameters on the response of a single deep foundation to the kinematic demands of lateral

spreading. These models focused on assessing the effects of changes in the embankment

width, the depth to the liquefied layer, the thickness of the liquefied layer, and the bending

stiffness of the foundation. The observed effects were framed within the context of a reduc-

tion in foundation bending demands as compared to a plane strain description of the site.

Based on this parameter study, it was determined that the interaction of the geometric site

parameters defines the overall lateral response of the system.

Reductions ratios were computed by comparing the foundation demands from the cases

with 3D geometries to corresponding results obtained from wide geometry configurations

that mimic plane strain conditions. The residual reduction ratios were compared to various

combinations of the site parameters in order to establish dimensionless parameters, which,

when plotted in natural-log space, demonstrated a strong correlation for the data set. A

mathematical model that describes the residual reduction ratio in terms of the site parame-

ters was obtained from this plotted data using least squares. Using this proposed reduction

model, a first-order approximation can be obtained for the expected amount of pinning

resistance available for a particular site configuration. This reduction model represents a

valuable tool to the designer, especially when used in concert with a simplified analysis

procedure, as it provides an independent assessment of the general foundation response to

lateral spreading.
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Chapter 11

RESEARCH OUTCOMES

This dissertation presents an extensive research program performed in the pursuit of

identifying and quantifying mechanisms that lead to reductions in bridge foundation de-

mands during lateral spreading with consideration for three-dimensional site geometry ef-

fects. This research encompasses the development of efficient finite element formulations,

the review of current design procedures, the identification of an appropriate case history

bridge, and the development and analysis of numerical models to study the response of the

case history bridge foundations to the kinematic demands of lateral spreading.

11.1 Summary and Conclusions

A summary of the completed work and a discussion of the related research findings are

presented for each of the primary topics considered in the work. The following sections

reiterate the fundamental aspects of each topic and identify any conclusions drawn from

that portion of the research.

11.1.1 Finite Element Development

Four efficient continuum finite element formulations were developed and implemented to

support the modeling effort involved in the remainder of this work. These elements include

both displacement and coupled fluid solid formulations for use in 2D and 3D. The solid

elements, and the solid phase of the coupled elements, use hourglass stabilized single-point

integration schemes to reduce computational expense, and take advantage of assumed strain

fields to eliminate volumetric and shear locking phenomena. The coupled elements use a

u-p formulation to consider the coupled response of a pore fluid and solid skeleton under the

assumptions of mixture theory, and use a direct stabilization technique to enhance element

stability in the incompressible-impermeable limit.

The beam-solid contact element of Petek (2006) was extended to include an alternative

constraint enforcement approach. The original element formulation uses the method of

Lagrange multipliers to enforce the contact constraints for the element. In this work, the

formulation was modified to include enforcement of the contact constraints using a penalty

approach. This modification results in a relaxation of the constraint enforcement that is

beneficial in certain analysis configurations.
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11.1.2 Review of Current Simplified Design Procedures

The design procedures used by the California Department of Transportation and Wash-

ington State Department of Transportation for bridge foundations subject to liquefaction-

induced lateral ground deformation were reviewed to assess the state of current design

practice for this load case. These two approaches are based off of the same underlying

documents, and consider similar analysis components such as beam on nonlinear Winkler

foundation and slope stability models, however, due to key differences in assumptions, they

lead to different outcomes for certain site configurations.

The Caltrans procedure makes a distinction between cases for which it is expected that

the foundation will provide lateral pinning resistance, and cases for which no resistance is

assumed. For the cases where assuming foundational restraint appears to be reasonable,

the pile pinning analysis procedure (Martin et al., 2002; Boulanger et al., 2006; Ashford

et al., 2011), which is based on the assumption of compatibility between the foundation

resistance and embankment deformation during lateral spreading, is adopted by Caltrans.

The WSDOT design procedure makes no explicit distinction between these two types of

cases, and instead assumes that the bridge foundation shall be designed to withstand the

soil deformation and attendant lateral forces that would occur due to liquefaction-induced

flow failure or lateral spreading in the absence of a foundation.

11.1.3 Case History Evaluation

A series of Chilean bridge sites affected by lateral spreading due to the 2010 offshore Maule

earthquake were examined for potential use as a case study to support this research. These

bridge sites were evaluated in terms of the evidence of three-dimensional soil deformation

effects, the sufficiency of the available structural and geotechnical data, and the applicability

of the bridge design details to newly designed structures. Based on this evaluation, Puente

Mataquito was selected for use as the primary case study site for this research, while several

other bridges were identified as candidates for future consideration.

11.1.4 Numerical Analysis of Case Study Site

Three numerical modeling techniques were used to examine the effects of lateral spreading

on the selected case study bridge. These models vary in complexity and in their intended

use. A summary of each technique and the associated findings follows.

11.1.4.1 Plane Strain Models

Dynamic plane strain effective stress models of the Puente Mataquito site were developed

and analyzed to evaluate the response of the bridge and soils to seismic excitation. This

model was used to demonstrate the effects of the soil domain thickness on the response
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of the bridge foundations, and to verify assumptions made during the development of the

idealized soil profile used for the numerical models of the site. A version of the plane strain

model was used to assess the performance of the bridge to a ground motion similar to what

may have been experienced at Puente Mataquito. This analysis returned results that were

reasonably similar to observations made following the Maule earthquake, and confirmed the

susceptibility of the site to liquefaction. Lateral spreading deformations associated with

liquefaction were observed in these models, and the abutment foundations were found to be

affected more significantly by this soil deformation than most of the interior pier foundations.

Based on the scope of liquefaction and lateral spreading in the soil near the two abutments,

and a comparison of the foundation demands imposed upon the bridge foundations due to

these paired phenomena, the southwest abutment was identified for further study.

11.1.4.2 Three-Dimensional Models

Three-dimensional finite element models of the southwestern abutment of Puente Mataquito

were developed and analyzed in an effort to identify the mechanisms leading to the reduc-

tions in foundation demands implied by the combination of large free-field lateral spreading

deformation and minimal structural damage observed at the site. Overall, the results ob-

tained from the 3D modeling effort compared favorably to the site observations. The general

soil deformation patterns were the same, with the approach embankment tending to slump

vertically and spread outwards instead of moving only in the direction of lateral spreading.

The magnitudes of these deformations did not directly correspond with the reported site

response, however, the similarity in the trends captured by the model to those observed

increases confidence in the results obtained from the model.

The primary goal of these models is to assess the response of the foundation to a set

of demands similar to those that would occur during an actual lateral spreading event. All

of the 3D analysis was conducted pseudo statically, working from the assumptions that

liquefaction has already developed and inertial effects can be ignored. The validity of

these assumptions was addressed through the consideration of two distinct approaches to

simulating the kinematic demands of lateral spreading. The foundation bending demands

resulting from each approach were found to be similar, further increasing confidence in the

results from the 3D modeling effort.

Models that simulated lateral spreading using an applied kinematic approach demon-

strated a reduction in the soil and foundation demands when 3D site geometry was con-

sidered. These models identified the importance of the lateral resistance provided by the

bridge superstructure in defining the response of the foundation, and demonstrated the dif-

ferences in foundation response before and after the deck expansion gap was closed due to

lateral foundation movement. The models that simulated lateral spreading through grad-

ual reductions in the shear strength and stiffness of the liquefiable soil layer identified how
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the presence of the approach embankment creates instability in the liquefied soil system.

Further evidence of the foundation pinning effect was obtained through the comparison of

models both with and without the bridge foundation.

11.1.4.3 Simplified Models

The pile pinning analysis procedure (Martin et al., 2002; Boulanger et al., 2006; Ashford

et al., 2011) was assessed through an application of the Caltrans (2011) version of the pro-

cedure to the southwest abutment of Puente Mataquito. The compatible displacements

obtained from the pile pinning analysis were shown to possess great variability with respect

to the particular assumptions and modeling choices made in the individual analysis phases

that comprise the pile pinning approach. It was proposed that the compatible displacement

used in the final foundation design phase be selected as an average of the compatible dis-

placements resulting from a series of different modeling configurations and assumptions. In

this manner, the design solution that is most representative of the site conditions can be

obtained.

The pile pinning analysis procedure was shown to produce foundation demands that

were consistent with the results obtained from certain 3D model configurations. When a

smaller deck expansion gap was considered in the 3D model, the two approaches produced

reasonably similar foundation bending demands. When the 3D models considered a larger

expansion gap, comparisons of the two sets of foundation demands were not as favorable.

A potential solution to this problem was proposed and demonstrated in which the design

displacement is defined as the sum of the gap magnitude and the compatible displacement

obtained from the pile pinning approach. With this modification, the pile pinning results

were much more similar to those obtained from the large expansion gap 3D models

11.1.5 Parameter Study of Geometric Site Effects

A series of 3D finite element models was developed and analyzed to investigate the effects of

various site parameters on the response of a single deep foundation to the kinematic demands

of lateral spreading. This modeling effort provided further evidence that consideration for

the 3D geometry of the site is an important factor in this type of analysis. It was determined

that the lateral response of the foundation for a particular site is governed by the interaction

of multiple site parameters, including the location and size of the liquefied layer, the width

of the approach embankment, and the size and stiffness of the foundation.

A predictive model was developed from the parameter study data set that can be used to

estimate the reductions in foundation demands as compared to a two-dimensional descrip-

tion of the site. The reductions returned by this model can be applied to the foundation

shear force and bending moment demands obtained from a simplified analysis in order to get

a first-order approximation of the expected demands with consideration for 3D site effects.
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The reduction model can also be used to inform a simplified analysis approach by providing

an estimate of how much lateral pinning resistance can be expected for a particular case.

11.2 Directions for Future Research

The research discussed in this document has identified several avenues for further study

into the effects of lateral spreading on bridge foundations. This future research is divided

into two broad groups: (1) the further numerical evaluation of case history bridges with

consideration for 3D effects, and (2) the expansion and refinement of the parameter study

data set for the evaluation of geometric site effects.

11.2.1 Case Study Evaluation

The 3D finite element simulations related to Puente Mataquito have demonstrated the

effectiveness of this approach for learning about the behavior of bridge foundations during

lateral spreading, however, the results obtained from these models need further verification

and validation that can only be gained through the consideration of one or more different

bridges. Several potential bridge sites have been identified for this purpose, both in Chile

(see Chapter 6), and elsewhere in the world (see Chapter 1), and there are undoubtedly

other bridges not identified in this work that would be suitable for the purpose.

The selection of any future case study bridge for use in a numerical evaluation of this

problem should focus on site configurations and modeling aspects that were not considered in

the Puente Mataquito work. The parameter study presented in Chapter 10 has identified the

importance of consideration for the full geometry of the site in determining the response of

the foundation to lateral spreading. A bridge that is constructed in a different manner than

Puente Mataquito would be useful for furthering the understanding of this problem. The

current work has identified the influence of the bridge deck as a major factor in defining the

lateral response of the foundation, therefore, it could be useful to incorporate a more rigorous

description of the bridge deck, the expansion gap, and the deck to abutment connection in

future models.

A dynamic analysis is another modeling refinement that holds potential for a three-

dimensional assessment of the effects of lateral spreading on bridge foundations. The current

work has focused simulating the kinematic demands of lateral spreading through simplified

techniques. While this has shown to be an effective method with which to study foundation

response to lateral soil deformation, the pseudo static approach employed in the models

ignores certain aspects of the problem such as inertial forces and pore pressure generation

effects. A dynamic effective stress model could allow for a more natural consideration of the

problem, though such a model would present several challenges for the hypothetical future

researcher.
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In addition to the potential for modeling refinements or alternative configurations in

advancing the understanding of the mechanisms governing the lateral spreading problem,

future case study models could be used to support the further validation of the pile pinning

analysis approach. This work has shown that this approach compared favorably with certain

3D models for Puente Mataquito, but it is of interest to expand the scope of this validation

effort to different bridge configurations and soil profiles. The pile pinning approach holds

great potential for use as the primary simplified design technique for bridge foundation

subject to lateral spreading, and any improvements or refinements that can be achieved

through comparison to 3D models will greatly benefit the profession.

11.2.2 Parameter Study Expansion/Refinement

Another direction for future work lies in furthering the ideas obtained from the parameter

study presented in Chapter 10. Specifically, it is of interest to determine whether a new

series of models that considers a new set of site parameters produces bending demands that

correspond to those obtained in this work. This future parameter study effort could focus

on parameters that were not explicitly considered here, such as the height of the approach

embankment, or on further variations in the parameters that were considered, such as more

liquefied layer arrangements and different shaft designs. The consideration of more liquefied

layer depths closer to the ground surface would be particularly useful, as this would expand

the number of cases with smaller reduction ratios.

Other potential effects that may be beneficial to include in future studies of this nature

are the effect of shaft groups or deck resistance on the influence of the geometric site pa-

rameters. The current data set includes only a single deep foundation, and it is not clear

whether the addition of shaft foundations will affect the reduction in a manner similar to

increases in foundation bending stiffness, or whether it will manifest as some other effect

entirely. It is likely conservative to generate the reduction ratio data set in the absence of

the additional lateral resistance provided by the bridge deck, however, it may be useful to

include this aspect of the problem in order to be able to predict how this resistance affects

the overall behavior of the system.
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Géotechnique, 47(2), 255–272.

Martin, G. R. (2004). “The seismic design of bridges - Geotechnical and foundation design issues.”

Geotechnical Engineering for Transportation Projects, M. K. Yegian and E. Kavazanjian, eds.,

GSP 126, ASCE. 137–166.



www.manaraa.com

257

Martin, G. R., March, M. L., Anderson, D. G., Mayes, R. L., and Power, M. S. (2002). “Recom-

mended design approach for liquefaction induced lateral spreads.” Proc., 3rd Natl. Seismic Conf.

and Workshop on Bridges and Highways, MCEER-02-SP04, Buffalo, NY.

Matlock, H. (1970). “Correlations for design of laterally loaded piles in soft clay.” Proceedings of the

2nd Offshore Technology Conference, Houston, TX. (OTC 1204), 577–594.

McGann, C. R. (2009). “Analysis and evaluation of single piles in laterally spreading soil. Master’s

thesis, University of Washington.

McGann, C. R., Arduino, P., and Mackenzie-Helnwein, P. (2010). “Lateral resistance reduction

for static analysis of lateral spreading.” Joint Conference Proceedings, 7th International Confer-

ence on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake

Engineering (5ICEE), Tokyo Institute of Technology, Tokyo, Japan. 593–600.

McGann, C. R., Arduino, P., and Mackenzie-Helnwein, P. (2011). “Applicability of conventional

p - y relations to the analysis of piles in laterally spreading soil.” Journal of Geotechnical and

Geoenvironmental Engineering, ASCE, 137(6), 557–567.

McGann, C. R., Arduino, P., and Mackenzie-Helnwein, P. (2012). “Development of simplified anal-

ysis procedure for piles in laterally spreading layered soils.” PEER Report No. 2012/05, Pacific

Earthquake Engineering Research Center, University of California, Berkeley.

Meera, R. S., Shanker, K., and Basudhar, P. K. (2007). “Flexural response of piles under liquefied

soil conditions.” Geotechnical and Geological Engineering, 25(4), 409–422.

Meyerhof, G. G. (1956). “Penetration tests and bearing capacity of cohesionless soils.” Journal of

the Soil Mechanics and Foundations Division, ASCE, 82(SM1), 1–19.

Meyerhof, G. G. (1976). “Bearing capacity and settlement of pile foundations.” Journal of the Soil

Mechanics and Foundations Division, ASCE, 102, 197–228.

Mid-America Earthquake (MAE) Center (2010). The Maule (Chile) Earthquake of February 27,

2010 Consequence Assessment and Case Studies. A. S. Elnashai, B. Gencturk, O.-S. Kwon, I. L.

Al-Qadi, Y. Hashash, J. R. Roesler, S.-J. Kim, S.-H. Jeong, J. Dukes, and A. Valdivia, Report

No. 10-04.

Ministerio de Obras Públicas (MOP) (2002). Manual de Carreteras, Vol. 3, Instrucciones y Criterios
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